Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opposite actions of alcohol on tonic GABAA receptor currents mediated by nNOS and PKC activity

Abstract

The molecular mechanisms that mediate genetic variability in response to alcohol are unclear. We found that alcohol had opposite actions (enhancement or suppression) on GABAA receptor (GABAAR) inhibition in granule cells from the cerebellum of behaviorally sensitive, low alcohol–consuming Sprague-Dawley rats and DBA/2 mice and behaviorally insensitive, high alcohol–consuming C57BL/6 mice, respectively. The effect of alcohol on granule cell GABAAR inhibition was determined by a balance between two opposing effects: enhanced presynaptic vesicular release of GABA via alcohol inhibition of nitric oxide synthase (NOS) and a direct suppression of the activity of postsynaptic GABAARs. The balance of these two processes was determined by differential expression of neuronal NOS (nNOS) and postsynaptic PKC activity, both of which varied across the rodent genotypes. These findings identify opposing molecular processes that differentially control the magnitude and polarity of GABAAR responses to alcohol across rodent genotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C57BL/6J and DBA/2J mouse granule cells exhibit similar magnitude tonic currents mediated by α6 and δ subunit–containing GABAARs.
Figure 2: The effect of ethanol on granule cell tonic GABAAR currents varies in polarity and magnitude across rodent genotypes with divergent ethanol consumption phenotypes.
Figure 3: Ethanol-induced potentiation of granule cell tonic GABAAR current is mediated by suppression of NOS and consequent increase in action potential dependent vesicular release of GABA.
Figure 4: Ethanol suppresses tonic production of NO in the granule cell layer.
Figure 5: Ethanol inhibition of NOS increases Golgi cell firing.
Figure 6: Differential expression of nNOS underlies differences in ethanol-induced potentiation of granule cell GABAAR transmission.
Figure 7: Ethanol-induced suppression of tonic GABAAR current in C57BL/6J and DBA/2J granule cells is a result of direct action on GABAARs.
Figure 8: Direct suppression of tonic GABAAR current by ethanol is prevented by postsynaptic PKC activity.

Similar content being viewed by others

References

  1. Harwood, H. Updating estimates of the economic costs of alcohol abuse in the United States: estimates, update methods and data. National Institute on Alcohol Abuse and Alcoholism, http://pubs.niaaa.nih.gov/publications/economic-2000/ (2000).

  2. Hill, S.Y. Neural plasticity, human genetics, and risk for alcohol dependence. Int. Rev. Neurobiol. 91, 53–94 (2010).

    Article  CAS  Google Scholar 

  3. Prescott, C.A. & Kendler, K.S. Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am. J. Psychiatry 156, 34–40 (1999).

    Article  CAS  Google Scholar 

  4. Herting, M.M., Fair, D. & Nagel, B.J. Altered fronto-cerebellar connectivity in alcohol-naive youth with a family history of alcoholism. Neuroimage 54, 2582–2589 (2011).

    Article  Google Scholar 

  5. Schuckit, M.A., Tsuang, J.W., Anthenelli, R.M., Tipp, J.E. & Nurnberger, J.I. Jr. Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J. Stud. Alcohol 57, 368–377 (1996).

    Article  CAS  Google Scholar 

  6. Schuckit, M.A., Smith, T.L., Kalmijn, J. & Danko, G.P. A cross-generational comparison of alcohol challenges at about age 20 in 40 father-offspring pairs. Alcohol. Clin. Exp. Res. 29, 1921–1927 (2005).

    Article  Google Scholar 

  7. Yoneyama, N., Crabbe, J.C., Ford, M.M., Murillo, A. & Finn, D.A. Voluntary ethanol consumption in 22 inbred mouse strains. Alcohol 42, 149–160 (2008).

    Article  CAS  Google Scholar 

  8. Gallaher, E.J., Jones, G.E., Belknap, J.K. & Crabbe, J.C. Identification of genetic markers for initial sensitivity and rapid tolerance to ethanol-induced ataxia using quantitative trait locus analysis in BXD recombinant inbred mice. J. Pharmacol. Exp. Ther. 277, 604–612 (1996).

    CAS  PubMed  Google Scholar 

  9. Bell, R.L., et al. Responsivity and development of tolerance to the motor impairing effects of moderate doses of ethanol in alcohol-preferring (P) and -nonpreferring (NP) rat lines. Alcohol. Clin. Exp. Res. 25, 644–650 (2001).

    Article  CAS  Google Scholar 

  10. Malila, A. Intoxicating effects of three aliphatic alcohols and barbital on two rat strains genetically selected for their ethanol intake. Pharmacol. Biochem. Behav. 8, 197–201 (1978).

    Article  CAS  Google Scholar 

  11. McClearn, G.E., Deitrich, R.A. & Erwin, V.G. Development of Animal Models as Pharmacogentic Tools, Research Monograph No. 6 (National Institute of Alcohol Abuse and Alcoholism, Washington DC, 1981).

  12. Al-Rejaie, S. & Dar, M.S. Antagonism of ethanol ataxia by intracerebellar nicotine: possible modulation by mouse cerebellar nitric oxide and cGMP. Brain Res. Bull. 69, 187–196 (2006).

    Article  CAS  Google Scholar 

  13. Duguid, I., Branco, T., London, M., Chadderton, P. & Hausser, M. Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J. Neurosci. 32, 11132–11143 (2012).

    Article  CAS  Google Scholar 

  14. Hamann, M., Rossi, D.J. & Attwell, D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33, 625–633 (2002).

    Article  CAS  Google Scholar 

  15. Brickley, S.G., Revilla, V., Cull-Candy, S.G., Wisden, W. & Farrant, M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409, 88–92 (2001).

    Article  CAS  Google Scholar 

  16. Meera, P., Wallner, M. & Otis, T.S. Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABAA receptors. J. Neurophysiol. 106, 2057–2064 (2011).

    Article  CAS  Google Scholar 

  17. Rossi, D.J., Hamann, M. & Attwell, D. Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J. Physiol. (Lond.) 548, 97–110 (2003).

    Article  CAS  Google Scholar 

  18. Stell, B.M., Brickley, S.G., Tang, C.Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit–containing GABAA receptors. Proc. Natl. Acad. Sci. USA 100, 14439–14444 (2003).

    Article  CAS  Google Scholar 

  19. Carta, M., Mameli, M. & Valenzuela, C.F. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J. Neurosci. 24, 3746–3751 (2004).

    Article  CAS  Google Scholar 

  20. Hanchar, H.J., Dodson, P.D., Olsen, R.W., Otis, T.S. & Wallner, M. Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity. Nat. Neurosci. 8, 339–345 (2005).

    Article  CAS  Google Scholar 

  21. Botta, P. et al. Modulation of GABAA receptors in cerebellar granule neurons by ethanol: a review of genetic and electrophysiological studies. Alcohol 41, 187–199 (2007).

    Article  CAS  Google Scholar 

  22. Melchior, C.L. & Myers, R.D. Genetic differences in ethanol drinking of the rat following injection of 6-OHDA, 5,6-DHT or 5,7-DHT into the cerebral ventricles. Pharmacol. Biochem. Behav. 5, 63–72 (1976).

    Article  CAS  Google Scholar 

  23. Korpi, E.R., Kuner, T., Seeburg, P.H. & Luddens, H. Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor. Mol. Pharmacol. 47, 283–289 (1995).

    CAS  PubMed  Google Scholar 

  24. Saxena, N.C. & Macdonald, R.L. Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. Mol. Pharmacol. 49, 567–579 (1996).

    CAS  PubMed  Google Scholar 

  25. De Schutter, E. & Bower, J.M. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol. 71, 401–419 (1994).

    Article  CAS  Google Scholar 

  26. Ford, M.M. et al. The influence of selection for ethanol withdrawal severity on traits associated with ethanol self-administration and reinforcement. Alcohol. Clin. Exp. Res. 35, 326–337 (2011).

    Article  Google Scholar 

  27. Porcu, P. et al. Differential effects of ethanol on serum GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in mice, rats, cynomolgus monkeys, and humans. Alcohol. Clin. Exp. Res. 34, 432–442 (2010).

    Article  CAS  Google Scholar 

  28. Botta, P., Simoes de Souza, F.M., Sangrey, T., De Schutter, E. & Valenzuela, C.F. Excitation of rat cerebellar Golgi cells by ethanol: further characterization of the mechanism. Alcohol. Clin. Exp. Res. 36, 616–624 (2012).

    Article  CAS  Google Scholar 

  29. Fataccioli, V., Gentil, M., Nordmann, R. & Rouach, H. Inactivation of cerebellar nitric oxide synthase by ethanol in vitro. Alcohol Alcohol. 32, 683–691 (1997).

    Article  CAS  Google Scholar 

  30. Wall, M.J. Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum. Eur. J. Neurosci. 18, 869–878 (2003).

    Article  Google Scholar 

  31. Harris, R.A. et al. Mutant mice lacking the gamma isoform of protein kinase C show decreased behavioral actions of ethanol and altered function of gamma-aminobutyrate type A receptors. Proc. Natl. Acad. Sci. USA 92, 3658–3662 (1995).

    Article  CAS  Google Scholar 

  32. Naik, M.U. et al. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain. J. Comp. Neurol. 426, 243–258 (2000).

    Article  CAS  Google Scholar 

  33. Fidler, T.L. et al. Intragastric self-infusion of ethanol in high- and low-drinking mouse genotypes after passive ethanol exposure. Genes Brain Behav. 10, 264–275 (2011).

    Article  CAS  Google Scholar 

  34. McCool, B.A. & Chappell, A.M. Using monosodium glutamate to initiate ethanol self-administration in inbred mouse strains. Addict. Biol. 17, 121–131 (2012).

    Article  CAS  Google Scholar 

  35. Jia, F., Chandra, D., Homanics, G.E. & Harrison, N.L. Ethanol modulates synaptic and extrasynaptic GABAA receptors in the thalamus. J. Pharmacol. Exp. Ther. 326, 475–482 (2008).

    Article  CAS  Google Scholar 

  36. Liang, J. et al. Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J. Neurosci. 26, 1749–1758 (2006).

    Article  CAS  Google Scholar 

  37. Nie, Z., Madamba, S.G. & Siggins, G.R. Ethanol enhances gamma-aminobutyric acid responses in a subpopulation of nucleus accumbens neurons: role of metabotropic glutamate receptors. J. Pharmacol. Exp. Ther. 293, 654–661 (2000).

    CAS  PubMed  Google Scholar 

  38. Peris, J., Coleman-Hardee, M., Burry, J. & Pecins-Thompson, M. Selective changes in GABAergic transmission in substantia nigra and superior colliculus caused by ethanol and ethanol withdrawal. Alcohol. Clin. Exp. Res. 16, 311–319 (1992).

    Article  CAS  Google Scholar 

  39. Theile, J.W., Morikawa, H., Gonzales, R.A. & Morrisett, R.A. Role of 5-hydroxytryptamine2C receptors in Ca2+-dependent ethanol potentiation of GABA release onto ventral tegmental area dopamine neurons. J. Pharmacol. Exp. Ther. 329, 625–633 (2009).

    Article  CAS  Google Scholar 

  40. Criswell, H.E., Ming, Z., Kelm, M.K. & Breese, G.R. Brain regional differences in the effect of ethanol on GABA release from presynaptic terminals. J. Pharmacol. Exp. Ther. 326, 596–603 (2008).

    Article  CAS  Google Scholar 

  41. Kumar, S. et al. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl.) 205, 529–564 (2009).

    Article  CAS  Google Scholar 

  42. Korpi, E.R. et al. Cerebellar granule cell–specific GABAA receptors attenuate benzodiazepine-induced ataxia: evidence from alpha 6-subunit-deficient mice. Eur. J. Neurosci. 11, 233–240 (1999).

    Article  CAS  Google Scholar 

  43. Mihalek, R.M. et al. GABA(A)-receptor delta subunit knockout mice have multiple defects in behavioral responses to ethanol. Alcohol. Clin. Exp. Res. 25, 1708–1718 (2001).

    CAS  PubMed  Google Scholar 

  44. White, C.N. et al. Opposing effects of coupled and uncoupled NOS activity on the Na+-K+ pump in cardiac myocytes. Am. J. Physiol. Cell Physiol. 294, C572–C578 (2008).

    Article  CAS  Google Scholar 

  45. Salapatek, A.M., Wang, Y.F., Mao, Y.K., Mori, M. & Daniel, E.E. Myogenic NOS in canine lower esophageal sphincter: enzyme activation, substrate recycling, and product actions. Am. J. Physiol. 274, C1145–C1157 (1998).

    Article  CAS  Google Scholar 

  46. Wang, W., Hebert, S.C. & Giebisch, G. Renal K+ channels: structure and function. Annu. Rev. Physiol. 59, 413–436 (1997).

    Article  CAS  Google Scholar 

  47. Johnson, W.D., Howard, R.J., Trudell, J.R. & Harris, R.A. The TM2 6′ position of GABA(A) receptors mediates alcohol inhibition. J. Pharmacol. Exp. Ther. 340, 445–456 (2012).

    Article  Google Scholar 

  48. Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389, 385–389 (1997).

    Article  CAS  Google Scholar 

  49. Ueno, S. et al. Tryptophan scanning mutagenesis in TM2 of the GABA(A) receptor alpha subunit: effects on channel gating and regulation by ethanol. Br. J. Pharmacol. 131, 296–302 (2000).

    Article  CAS  Google Scholar 

  50. Yamashita, M., Marszalec, W., Yeh, J.Z. & Narahashi, T. Effects of ethanol on tonic GABA currents in cerebellar granule cells and mammalian cells recombinantly expressing GABA(A) receptors. J. Pharmacol. Exp. Ther. 319, 431–438 (2006).

    Article  CAS  Google Scholar 

  51. Kojima, H. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Crabbe, D. Finn and K. Wiren (Oregon Health and Science University) for discussions about the research and D. Attwell (University College London) for comments on the manuscript. This study was supported by National Institute of Neurological Disorders and Stroke grant R01NS051561, National Institute on Alcohol Abuse and Alcoholism grant R01AA012439, an American Heart Association Grant in Aid, and a Medical Research Foundation of Oregon grant to D.J.R., training grants T32 AA007468 and F31 AA022267 from the National Institute on Alcohol Abuse and Alcoholism, and an Oregon Health and Science University Research Scholars Award to J.S.K., and the Neuroscience Imaging Center at Oregon Health and Science University grant P30NS061800 from the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Contributions

J.S.K. and D.J.R. designed the experiments. J.S.K. performed the electrophysiology experiments and C.M. performed the immunocytochemistry experiments. J.S.K. and D.J.R. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to David J Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, J., Mohr, C. & Rossi, D. Opposite actions of alcohol on tonic GABAA receptor currents mediated by nNOS and PKC activity. Nat Neurosci 16, 1783–1793 (2013). https://doi.org/10.1038/nn.3559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing