Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake

Subjects

This article has been updated

Abstract

Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glucose restriction promotes a brain tumor initiating cell phenotype.
Figure 2: Enrichment for BTICs under nutrient deprivation is associated with preferential BTIC survival and adaptation of non-BTICs toward a BTIC phenotype.
Figure 3: BTICs preferentially take up glucose.
Figure 4: Increased expression of Glut3 in BTICs drives glucose uptake.
Figure 5: Glut3 regulates BTIC growth and self-renewal.
Figure 6: GLUT3 expression is significantly increased in glioblastomas compared to lower grade tumors and in recurrent brain tumors and brain tumors from patients with poorer survival.
Figure 7: GLUT3 expression correlates with poor survival in multiple brain tumor data sets.
Figure 8: GLUT3 expression correlates with induced pluripotency and predicts poor survival in multiple tumor types beyond the brain.

Similar content being viewed by others

Change history

  • 12 September 2013

    In the version of this article initially published online, author Bryan W. Day did not appear. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bao, S. et al. Brain tumor initiating cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, G. et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer 5, 67 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peters, A. et al. The selfish brain: competition for energy resources. Neurosci. Biobehav. Rev. 28, 143–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Derr, R.L. et al. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 27, 1082–1086 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Panopoulos, A.D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Ward, P.S. & Thompson, C.B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of brain tumor initiating cells. Cancer Cell 15, 501–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heddleston, J.M., Li, Z., McLendon, R.E., Hjelmeland, A.B. & Rich, J.N. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8, 3274–3284 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hjelmeland, A.B. et al. Acidic stress promotes a brain tumor initiating cell phenotype. Cell Death Differ. 18, 829–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Fellows, L.K. & Boutelle, M.G. Rapid changes in extracellular glucose levels and blood flow in the striatum of the freely moving rat. Brain Res. 604, 225–231 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Burgess, E.A. & Sylven, B. Glucose, lactate, and lactic dehydrogenase activity in normal interstitial fluid and that of solid mouse tumors. Cancer Res. 22, 581–588 (1962).

    CAS  PubMed  Google Scholar 

  17. Laks, D.R. et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27, 980–987 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mathews, E.H., Liebenberg, L. & Pelzer, R. High-glycolytic cancers and their interplay with the body's glucose demand and supply cycle. Med. Hypotheses 76, 157–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshioka, K. et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim. Biophys. Acta 1289, 5–9 (1996).

    Article  PubMed  Google Scholar 

  20. Song, J. et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150–154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vannucci, S.J., Maher, F. & Simpson, I.A. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21, 2–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Nagamatsu, S., Sawa, H., Wakizaka, A. & Hoshino, T. Expression of facilitative glucose transporter isoforms in human brain tumors. J. Neurochem. 61, 2048–2053 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Boado, R.J., Black, K.L. & Pardridge, W.M. Gene expression of Glut3 and Glut1 glucose transporters in human brain tumors. Brain Res. Mol. Brain Res. 27, 51–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Freije, W.A. et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 64, 6503–6510 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Sun, L. et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9, 287–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Phillips, H.S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Nutt, C.L. et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63, 1602–1607 (2003).

    CAS  PubMed  Google Scholar 

  28. Madhavan, S. et al. Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol. Cancer Res. 7, 157–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cancer Genome Atlas Research Network. Comprehensive genomic characterization define human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  30. Verhaak, R.G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Loncaster, J.A. et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res. 61, 6394–6399 (2001).

    CAS  PubMed  Google Scholar 

  34. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Younes, M., Lechago, L.V., Somoano, J.R., Mosharaf, M. & Lechago, J. Immunohistochemical detection of Glut3 in human tumors and normal tissues. Anticancer Res. 17, 2747–2750 (1997).

    CAS  PubMed  Google Scholar 

  37. Younes, M., Brown, R.W., Stephenson, M., Gondo, M. & Cagle, P.T. Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 80, 1046–1051 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Ayala, F.R. et al. Glut1 and Glut3 as potential prognostic markers for oral squamous cell carcinoma. Molecules 15, 2374–2387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baer, S., Casaubon, L., Schwartz, M.R., Marcogliese, A. & Younes, M. Glut3 expression in biopsy specimens of laryngeal carcinoma is associated with poor survival. Laryngoscope 112, 393–396 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Gould, G.W. & Holman, G.D. The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 295, 329–341 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Charnley, N. et al. No relationship between 18F-fluorodeoxyglucose positron emission tomography and expression of Glut-1 and -3 and hexokinase I and II in high-grade glioma. Oncol. Rep. 20, 537–542 (2008).

    CAS  PubMed  Google Scholar 

  42. Chung, J.K. et al. Comparison of [18F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl. Med. Commun. 25, 11–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Novakovic, B., Gordon, L., Robinson, W.P., Desoye, G. & Saffery, R. Glucose as a fetal nutrient: dynamic regulation of several glucose transporter genes by DNA methylation in the human placenta across gestation. J. Nutr. Biochem. 24, 282–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Y., Shin, B.C., Thamotharan, S. & Devaskar, S.U. Creb1-Mecp2-(m)CpG complex transactivates postnatal murine neuronal glucose transporter isoform 3 expression. Endocrinology 154, 1598–1611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Wong, D.J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    CAS  PubMed  Google Scholar 

  52. Lathia, J.D. et al. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS ONE 6, e24807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cleveland Clinic Foundation Tissue Procurement Service, S. Staugatis, M. McGraw, the Flow Cytometry Core, S. Bao, T. Miller, D. Schonberg and Monica Venere; and the US National Institutes of Health: CA129958, CA116659 and CA154130 (J.N.R.); CA151522 (A.B.H.); CA157948 (J.D.L.), CA137443, NS063971, CA128269, CA101954 and CA116257 (A.E.S.); James S. McDonnell Foundation (J.N.R.); Voices Against Brain Cancer (J.D.L.); Ohio Department of Development Tech 09-071 (A.E.S.); American Brain Tumor Association (Y.K.); and Melvin Burkhardt Chair in Neurosurgical Oncology and Karen Colina Wilson Research Endowment (R.J.W.).

Author information

Authors and Affiliations

Authors

Contributions

Conception and experimental design: W.A.F., Q.W., Y.K., J.D.L., J.N.R. and A.B.H. Methodology and data acquisition: W.A.F., Q.W., M.H., N.R., A.E.S., R.J.W., I.N., J.N.S., B.W.S., B.W.D., M.L., J.D.L. and A.B.H. Analysis and interpretation of data: W.A.F., M.H., M.L., J.D.L., J.N.R. and A.B.H. Manuscript writing and/or revision: W.A.F., J.N.R. and A.B.H.

Corresponding author

Correspondence to Jeremy N Rich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–4 (PDF 8368 kb)

Glucose restriction induces Nanog promoter–driven GFP expression

Glucose restriction induces Nanog promoter–driven GFP expression (AVI 18523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flavahan, W., Wu, Q., Hitomi, M. et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16, 1373–1382 (2013). https://doi.org/10.1038/nn.3510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3510

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer