Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference

Abstract

Contextual cues associated with previous drug exposure can trigger drug craving and seeking, and form a substantial obstacle in substance use recovery. Using in vivo imaging in mice, we found that cocaine administration induced a rapid increase in the formation and accumulation of new dendritic spines, and that measures of new persistent spine gain correlated with cocaine conditioned place preference. Our data suggest that new persistent spine formation in the frontal cortex may be involved in stimulant-related learning driving appetitive behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine exposure increases spine gains in the frontal cortex.
Figure 2: Cocaine increases spine gains in the frontal cortex within 2 h of injection.
Figure 3: New persistent spine gains after cocaine CPP training correlate with the magnitude of gain in preference for the cocaine-paired context.

Similar content being viewed by others

References

  1. McLaughlin, J. & See, R.E. Psychopharmacology (Berl.) 168, 57–65 (2003).

    Article  CAS  Google Scholar 

  2. Pierce, R.C., Reeder, D.C., Hicks, J., Morgan, Z.R. & Kalivas, P.W. Neuroscience 82, 1103–1114 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Tai, L.H., Lee, A.M., Benavidez, N., Bonci, A. & Wilbrecht, L. Nat. Neurosci. 15, 1281–1289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chudasama, Y. & Robbins, T.W. Biol. Psychol. 73, 19–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Robinson, T.E., Gorny, G., Mitton, E. & Kolb, B. Synapse 39, 257–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Robinson, T.E. & Kolb, B. Eur. J. Neurosci. 11, 1598–1604 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Robinson, T.E. & Kolb, B. Neuropharmacology 47, 33–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Feng, G. et al. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hübener, M. Nature 457, 313–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Wilbrecht, L., Holtmaat, A., Wright, N., Fox, K. & Svoboda, K. J. Neurosci. 30, 4927–4932 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, T. et al. Nature 462, 915–919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Trends Neurosci. 26, 360–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bourne, J. & Harris, K.M. Curr. Opin. Neurobiol. 17, 381–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Holtmaat, A.J.G.D. et al. Neuron 45, 279–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zuo, Y., Lin, A., Chang, P. & Gan, W.-B. Neuron 46, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Knott, G.W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Nat. Neurosci. 9, 1117–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Holtmaat, A. et al. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Whistler, P. Janak, S. Jurado, C. Johnson and C. Bates for comments on the manuscript. This work was supported by the National Institute on Drug Abuse (R01DA029150), the State of California, University of California San Francisco, and the P. Royer and K. Clayton Family.

Author information

Authors and Affiliations

Authors

Contributions

F.J.M.-C., J.A. and D.P. performed the experiments. L.W. and F.J.M.-C. designed the experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Linda Wilbrecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Cuevas, F., Athilingam, J., Piscopo, D. et al. Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference. Nat Neurosci 16, 1367–1369 (2013). https://doi.org/10.1038/nn.3498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing