Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuned thalamic excitation is amplified by visual cortical circuits

A Publisher Correction to this article was published on 16 July 2018

This article has been updated

Abstract

Cortical neurons in thalamic recipient layers receive excitation from the thalamus and the cortex. The relative contribution of these two sources of excitation to sensory tuning is poorly understood. We optogenetically silenced the visual cortex of mice to isolate thalamic excitation onto layer 4 neurons during visual stimulation. Thalamic excitation contributed to a third of the total excitation and was organized in spatially offset, yet overlapping, ON and OFF receptive fields. This receptive field structure predicted the orientation tuning of thalamic excitation. Finally, both thalamic and total excitation were similarly tuned to orientation and direction and had the same temporal phase relationship to the visual stimulus. Our results indicate that tuning of thalamic excitation is unlikely to be imparted by direction- or orientation-selective thalamic neurons and that a principal role of cortical circuits is to amplify tuned thalamic excitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolating thalamic excitation.
Figure 2: Receptive field structure of thalamic excitation.
Figure 3: Orientation tuning of thalamic excitation.
Figure 4: Separation of ON and OFF thalamic subfields predicts preferred orientation of thalamic excitation.
Figure 5: Tuning of non-thalamic excitatory charge.
Figure 6: Tuning of non-thalamic excitatory F1 modulation.
Figure 7: Co-tuning and phase relationship between thalamic and non-thalamic excitation.

Similar content being viewed by others

Change history

  • 16 July 2018

    In the published version of this article, a data point is missing from Fig. 4f, and the y-axis label reads "RFpre"; it should read "RFpref". The original article has not been corrected. The original and corrected figures are shown in the accompanying Publisher Correction.

References

  1. Nelson, S., Toth, L., Sheth, B. & Sur, M. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science 265, 774–777 (1994).

    Article  CAS  Google Scholar 

  2. Anderson, J.S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000).

    Article  CAS  Google Scholar 

  3. Liu, B.H. et al. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat. Neurosci. 13, 89–96 (2010).

    Article  CAS  Google Scholar 

  4. Liu, B.H. et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71, 542–554 (2011).

    Article  CAS  Google Scholar 

  5. Brecht, M. & Sakmann, B. Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J. Physiol. (Lond.) 543, 49–70 (2002).

    Article  CAS  Google Scholar 

  6. Liu, B.H., Wu, G.K., Arbuckle, R., Tao, H.W. & Zhang, L.I. Defining cortical frequency tuning with recurrent excitatory circuitry. Nat. Neurosci. 10, 1594–1600 (2007).

    Article  CAS  Google Scholar 

  7. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  8. Chapman, B., Zahs, K.R. & Stryker, M.P. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J. Neurosci. 11, 1347–1358 (1991).

    Article  CAS  Google Scholar 

  9. Jin, J., Wang, Y., Swadlow, H.A. & Alonso, J.M. Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat. Neurosci. 14, 232–238 (2011).

    Article  CAS  Google Scholar 

  10. Reid, R.C. & Alonso, J.M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  CAS  Google Scholar 

  11. Usrey, W.M., Alonso, J.M. & Reid, R.C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20, 5461–5467 (2000).

    Article  CAS  Google Scholar 

  12. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  Google Scholar 

  13. Gilbert, C.D. & Wiesel, T.N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  14. Malach, R., Amir, Y., Harel, M. & Grinvald, A. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA 90, 10469–10473 (1993).

    Article  CAS  Google Scholar 

  15. Bosking, W.H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    Article  CAS  Google Scholar 

  16. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  CAS  Google Scholar 

  17. Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    Article  CAS  Google Scholar 

  18. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  19. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  20. Atallah, B.V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    Article  CAS  Google Scholar 

  21. Chung, S. & Ferster, D. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20, 1177–1189 (1998).

    Article  CAS  Google Scholar 

  22. Piscopo, D.M., El-Danaf, R.N., Huberman, A.D. & Niell, C.M. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33, 4642–4656 (2013).

    Article  CAS  Google Scholar 

  23. Grubb, M.S. & Thompson, I.D. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90, 3594–3607 (2003).

    Article  Google Scholar 

  24. Marshel, J.H., Kaye, A.P., Nauhaus, I. & Callaway, E.M. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76, 713–720 (2012).

    Article  CAS  Google Scholar 

  25. Lampl, I., Anderson, J.S., Gillespie, D.C. & Ferster, D. Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex. Neuron 30, 263–274 (2001).

    Article  CAS  Google Scholar 

  26. Cudeiro, J. & Sillito, A.M. Looking back: corticothalamic feedback and early visual processing. Trends Neurosci. 29, 298–306 (2006).

    Article  CAS  Google Scholar 

  27. Niell, C.M. & Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    Article  CAS  Google Scholar 

  28. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z.J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    Article  CAS  Google Scholar 

  29. Haider, B., Häusser, M. & Carandini, M. Inhibition dominates sensory responses in the awake cortex. Nature 493, 97–100 (2013).

    Article  Google Scholar 

  30. Lien, A.D. & Scanziani, M. In vivo labeling of constellations of functionally identified neurons for targeted in vitro recordings. Front. Neural Circuits 5, 16 (2011).

    Article  CAS  Google Scholar 

  31. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article  CAS  Google Scholar 

  32. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  Google Scholar 

  33. Jia, H., Rochefort, N.L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    Article  CAS  Google Scholar 

  34. Marshel, J.H., Mori, T., Nielsen, K.J. & Callaway, E.M. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67, 562–574 (2010).

    Article  CAS  Google Scholar 

  35. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    Article  CAS  Google Scholar 

  36. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch. 444, 491–498 (2002).

    Article  CAS  Google Scholar 

  37. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  38. Ringach, D.L., Shapley, R.M. & Hawken, M.J. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651 (2002).

    Article  CAS  Google Scholar 

  39. Swindale, N.V. Orientation tuning curves: empirical description and estimation of parameters. Biol. Cybern. 78, 45–56 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Evora for help with genotyping and mouse husbandry, J. Isaacson, E. Chichilnisky and the members of the Scanziani and Isaacson laboratories for helpful discussions of this project, and S. Olsen and K. Reinhold for help with dLGN recordings. This project was supported by the Gatsby charitable foundation, the Brain and Behavior Research Foundation and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.D.L. and M.S. designed the study. A.D.L. conducted all experiments and analysis. A.D.L. and M.S. wrote the paper.

Corresponding authors

Correspondence to Anthony D Lien or Massimo Scanziani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lien, A., Scanziani, M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat Neurosci 16, 1315–1323 (2013). https://doi.org/10.1038/nn.3488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing