Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS

Abstract

Neurotrophin receptors corresponding to vertebrate Trk, p75NTR or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogs unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit flies. Toll-6 and Toll-7 are expressed in the CNS throughout development and regulate locomotion, motor axon targeting and neuronal survival. DNT1 (also known as NT1 and spz2) and DNT2 (also known as NT2 and spz5) interact genetically with Toll-6 and Toll-7, and DNT1 and DNT2 bind to Toll-6 and Toll-7 promiscuously and are distributed in vivo in domains complementary to or overlapping with those of Toll-6 and Toll-7. We conclude that in fruit flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Toll-6 and Toll-7 are expressed in the CNS through all stages.
Figure 2: Identification of Toll-6 and Toll-7 cells in the locomotor circuit.
Figure 3: Toll-6 and Toll-7 are required for larval locomotion and motor-axon targeting.
Figure 4: Toll-6 and Toll-7 maintain neuronal survival.
Figure 5: Toll-6 and Toll-7 interact genetically with DNT2 and DNT1.
Figure 6: In vitro, cell culture and in vivo evidence that Toll-7 and Toll-6 bind DNT1 and DNT2.
Figure 7: The relative distributions of DNT1, 2 and Toll-7, 6, respectively, in vivo are consistent with their functions are ligand-receptor pairs.

References

  1. Leulier, F. & Lemaitre, B. Toll-like receptors—taking an evolutionary approach. Nat. Rev. Genet. 9, 165–178 (2008).

    CAS  PubMed  Google Scholar 

  2. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  Google Scholar 

  3. Imler, J.L. & Zheng, L. Biology of Toll receptors: lessons from insects and mammals. J. Leukoc. Biol. 75, 18–26 (2004).

    CAS  PubMed  Google Scholar 

  4. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  5. Yagi, Y., Nishida, Y. & Ip, Y.T. Functional analysis of Toll-related genes in Drosophila. Dev. Growth Differ. 52, 771–783 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamoto, M. et al. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity 36, 658–667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tauszig, S., Jouanguy, E., Hoffmann, J.A. & Imler, J.L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. USA 97, 10520–10525 (2000).

    CAS  PubMed  Google Scholar 

  8. Ooi, J.Y., Yagi, Y., Hu, X. & Ip, Y.T. The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3, 82–87 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Seppo, A., Matani, P., Sharrow, M. & Tiemeyer, M. Induction of neuron-specific glycosylation by Tollo/Toll-8, a Drosophila Toll-like receptor expressed in non-neural cells. Development 130, 1439–1448 (2003).

    CAS  PubMed  Google Scholar 

  10. Kambris, Z., Hoffmann, J.A., Imler, J.L. & Capovilla, M. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr. Patterns 2, 311–317 (2002).

    CAS  PubMed  Google Scholar 

  11. Hoffmann, J.A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    CAS  PubMed  Google Scholar 

  12. Weber, A.N.R. et al. Binding of Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794–800 (2003).

    CAS  PubMed  Google Scholar 

  13. Gay, N.J. & Gangloff, M. Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem. 76, 141–165 (2007).

    CAS  PubMed  Google Scholar 

  14. DeLotto, Y. & DeLotto, R. Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141–148 (1998).

    CAS  PubMed  Google Scholar 

  15. Gangloff, M. et al. Structural insight into the mechanism of activation of the Toll receptor by the dimeric ligand Spätzle. J. Biol. Chem. 283, 14629–14635 (2008).

    CAS  PubMed  Google Scholar 

  16. Lu, B., Pang, P.T. & Woo, N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 6, 603–614 (2005).

    CAS  PubMed  Google Scholar 

  17. Arnot, C.J., Gay, N.J. & Gangloff, M. Molecular mechanism that induces activation of Spatzle, the ligand for the Drosophila Toll receptor. J. Biol. Chem. 285, 19502–19509 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffmann, A. et al. Biophysical characterization of refolded Drosophila Spatzle, a cystine knot protein, reveals distinct properties of three isoforms. J. Biol. Chem. 283, 32598–32609 (2008).

    CAS  PubMed  Google Scholar 

  19. Hoffmann, A., Neumann, P., Schierhorn, A. & Stubbs, M.T. Crystallization of Spatzle, a cystine-knot protein involved in embryonic development and innate immunity in Drosophila melanogaster. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 707–710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, B. et al. Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLoS Biol. 6, e284 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Parker, J.S., Mizuguchi, K. & Gay, N.J. A family of proteins related to Spatzle, the toll receptor ligand, are encoded in the Drosophila genome. Proteins 45, 71–80 (2001).

    CAS  PubMed  Google Scholar 

  22. Jacobs, J.R. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog. Neurobiol. 62, 475–508 (2000).

    CAS  PubMed  Google Scholar 

  23. Rogulja-Ortmann, A., Lüer, K., Seibert, J., Rickert, C. & Technau, G.M. Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development 134, 105–116 (2007).

    CAS  PubMed  Google Scholar 

  24. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    CAS  PubMed  Google Scholar 

  25. Hidalgo, A. et al. Trophic neuron-glia interactions and cell number adjustments in the fruit fly. Glia 59, 1296–1303 (2011).

    PubMed  Google Scholar 

  26. Palgi, M. et al. Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons. Proc. Natl. Acad. Sci. USA 106, 2429–2434 (2009).

    CAS  PubMed  Google Scholar 

  27. Newquist, G. et al. Blocking apoptosis signaling rescues axon guidance in Netrin mutants. Cell Rep. 3, 595–606 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bergmann, A., Tugentman, M., Shilo, B.Z. & Steller, H. Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev. Cell 2, 159–170 (2002).

    CAS  PubMed  Google Scholar 

  29. Hidalgo, A., Kinrade, E.F.V. & Georgiou, M. The Drosophila neuregulin vein maintains glial survival during axon guidance in the CNS. Dev. Cell 1, 679–690 (2001).

    CAS  PubMed  Google Scholar 

  30. Learte, A.R., Forero, M.G. & Hidalgo, A. Gliatrophic and gliatropic roles of PVF/PVR signaling during axon guidance. Glia 56, 164–176 (2008).

    CAS  PubMed  Google Scholar 

  31. Gutierrez, H. & Davies, A.M. Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci. 34, 316–325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Foehr, E.D. et al. NF-κB signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC12 cells. J. Neurosci. 20, 7556–7563 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Carter, B.D. et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science 272, 542–545 (1996).

    CAS  PubMed  Google Scholar 

  34. Levi-Montalcini, R., Aloe, L. & Alleva, E. A role for Nerve Growth Factor in nervous, endocrine and immune systems. Prog. Neuroendocrinimmunol. 3, 1–10 (1990).

    Google Scholar 

  35. Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429–439 (2009).

    CAS  PubMed  Google Scholar 

  36. Sanyal, S. Genomic mapping and expression patterns of C380, OK6 and D42 enhancer trap lines in the larval nervous system of Drosophila. Gene Expr. Patterns 9, 371–380 (2009).

    CAS  PubMed  Google Scholar 

  37. Forero, M.G., Pennack, J.A., Learte, A.R. & Hidalgo, A. DeadEasy caspase: automatic counting of apoptotic cells in Drosophila. PLoS ONE 4, e5441 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Huang, E.J. & Reichardt, L.F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642 (2003).

    CAS  Google Scholar 

  39. Blum, R. & Konnerth, A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 20, 70–78 (2005).

    CAS  Google Scholar 

  40. Liu, X. & Jaenisch, R. Severe peripheral sensory neuron loss and modest motor neuron reduction in mice with combined deficiency of brain-derived neurotrophic factor, neurotrophin 3 and neurotrophin 4/5. Dev. Dyn. 218, 94–101 (2000).

    CAS  PubMed  Google Scholar 

  41. Mattson, M.P. & Meffert, M.K. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ. 13, 852–860 (2006).

    CAS  PubMed  Google Scholar 

  42. Freudenthal, R. & Romano, A. Participation of Rel/NF-κB transcription factors in long-term memory in the crab Chasmagnathus. Brain Res. 855, 274–281 (2000).

    CAS  PubMed  Google Scholar 

  43. Heckscher, E.S., Fetter, R.D., Marek, K.W., Albin, S.D. & Davis, G.W. NF-κB, IκB, and IRAK control glutamate receptor density at the Drosophila NMJ. Neuron 55, 859–873 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, Y. et al. Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J. Cell Biol. 175, 209–215 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Reichhart, J.M. et al. Expression and nuclear translocation of the rel/NF-κB-related morphogen dorsal during the immune response of Drosophila. C.R. Acad. Sci. III 316, 1218–1224 (1993).

    CAS  PubMed  Google Scholar 

  46. Putnam, N.H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    CAS  PubMed  Google Scholar 

  47. Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809–821 (2001).

    CAS  PubMed  Google Scholar 

  48. Bothwell, M. Evolution of the neurotrophin signaling system in invertebrates. Brain Behav. Evol. 68, 124–132 (2006).

    PubMed  Google Scholar 

  49. Sossin, W.S. Tracing the evolution and function of the Trk superfamily of receptor tyrosine kinases. Brain Behav. Evol. 68, 145–156 (2006).

    PubMed  Google Scholar 

  50. Okun, E., Griffioen, K.J. & Mattson, M.P. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 34, 269–281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Weber, A.N. et al. Role of the Spatzle pro-domain in the generation of an active toll receptor ligand. J. Biol. Chem. 282, 13522–13531 (2007).

    CAS  PubMed  Google Scholar 

  52. Rutschmann, S. The Rel protein DIF mediates the antifungal but not the antibacterial host defence in Drosophila. Immunity 12, 569–580 (2000).

    CAS  PubMed  Google Scholar 

  53. Broihier, H.T. & Skeath, J.B. Drosophila homeodomain protein dHb9 directs neuronal fate via crossrepressive and cell-nonautonomous mechanisms. Neuron 35, 39–50 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Arnot, J. Wen and M. Wheatley for advice; S. Jondhale, J. Ng and S. Quayle for technical help; S. Bishop and K. Kato for comments on the manuscript; A.J. Courey (University of California, Los Angeles), J.L. Imler (Institut de Biologie Moléculaire et Cellulaire, CNRS, Strasbourg), T. Ip (University of Massachusetts), J.M. Reichhart (Institut de Biologie Moléculaire et Cellulaire, CNRS, Strasbourg), S. Sanyal (Emory University), R. Baines (University of Manchester), M. Freeman (University of Oxford), K. Ito (University of Tokyo), A. Chiba (University of Miami), B. Pfeiffer (Janelia Farm), M. Landgraf (University of Cambridge), C. Basler (University of Zurich), H. Broihier (Case Western Reserve University), D. Ferrandon (CNRS, Strasbourg), the Bloomington Stock Center and Iowa Hybridoma Bank for reagents; the Birmingham Mass Spectrometry Facility (Birmingham Science City, Advantage West Midlands); and Len Packman for mass spectrometry and Edman sequencing in Cambridge. The LTQ Orbitrap Velos ETD mass spectrometer used in this research was obtained through the Birmingham Science City Translational Medicine: Experimental Medicine Network of Excellence project, with support from Advantage West Midlands (AWM). This work was funded by a UK Medical Research Council Career Establishment Grant (MRCG0200140) to A.H., Wellcome Trust project grant (WT094175/Z/10/Z) to A.H. and N.J.G., Wellcome Trust equipment grant (WT073228/Z/03/Z) to A.H., Wellcome Trust programme grant (WT081744MA) to N.J.G., European Union Marie Curie International Incoming Fellowship (PIIF-GA-2010-274193-NPN) to J.S.W., UK Medical Research Council studentship to G.M. and Brunei government studentship to M.A.L.

Author information

Authors and Affiliations

Authors

Contributions

G.M., I.F., J.A., J.S.W., M.A.L., J.C.F. and A.H. performed experiments; A.H. and N.J.G. conceived and directed the project; A.H., N.J.G. and G.M. wrote the paper; all authors contributed to planning experiments and analyzing data and to discussions and improvements to the manuscript.

Corresponding author

Correspondence to Alicia Hidalgo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–9 and Supplementary Tables 2 and 3 (PDF 27174 kb)

Supplementary Table 1

Supplementary Table 1 (XLSX 53 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McIlroy, G., Foldi, I., Aurikko, J. et al. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nat Neurosci 16, 1248–1256 (2013). https://doi.org/10.1038/nn.3474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing