Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs

Abstract

Regulation of calcium-permeable AMPA receptors (CP-AMPARs) is crucial in normal synaptic function and neurological disease states. Although transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2) modulate the properties of calcium-impermeable AMPARs (CI-AMPARs) and promote their synaptic targeting, the TARP-specific rules governing CP-AMPAR synaptic trafficking remain unclear. We used RNA interference to manipulate AMPAR-subunit and TARP expression in γ-2–lacking stargazer cerebellar granule cells—the classic model of TARP deficiency. We found that TARP γ-7 selectively enhanced the synaptic expression of CP-AMPARs and suppressed CI-AMPARs, identifying a pivotal role of γ-7 in regulating the prevalence of CP-AMPARs. In the absence of associated TARPs, both CP-AMPARs and CI-AMPARs were able to localize to synapses and mediate transmission, although their properties were altered. Our results also establish that TARPed synaptic receptors in granule cells require both γ-2 and γ-7 and reveal an unexpected basis for the loss of AMPAR-mediated transmission in stargazer mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GluA2 knockdown in cerebellar granule cells results in the expression of CP-AMPARs.
Figure 2: CP-AMPARs mediate mEPSCs after GluA2 knockdown.
Figure 3: CP-AMPARs are successfully trafficked to the cell surface in stg/stg cerebellar granule cells.
Figure 4: The presence of γ-7 determines the surface expression of CI-AMPARs in WT and stg/stg cerebellar granule cells.
Figure 5: Single- and double-knockdown experiments suggest a role of γ-7 in the regulation of synaptic AMPARs.
Figure 6: AMPAR subunits GluA2 and GluA4 coimmunoprecipitate with TARP γ-7 in cerebellar lysates from both WT and stg/stg mice.
Figure 7: Overexpression of γ-7 in cerebellar granule cells causes a switch from CI-AMPARs to CP-AMPARs.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuner, R. et al. Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc. Natl. Acad. Sci. USA 102, 5826–5831 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, B. et al. Ischemic insults direct glutamate receptor subunit 2–lacking AMPA receptors to synaptic sites. J. Neurosci. 26, 5309–5319 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park, J.S. et al. Persistent inflammation induces GluR2 internalization via NMDA receptor–triggered PKC activation in dorsal horn neurons. J. Neurosci. 29, 3206–3219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gangadharan, V. et al. Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice. J. Clin. Invest. 121, 1608–1623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P.H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Rosenthal, J.J. & Seeburg, P.H. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron 74, 432–439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hollmann, M., Hartley, M. & Heinemann, S. Ca2+ permeability of KA-AMPA–gated glutamate receptor channels depends on subunit composition. Science 252, 851–853 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Burnashev, N., Monyer, H., Seeburg, P.H. & Sakmann, B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Isaac, J.T., Ashby, M. & McBain, C.J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54, 859–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, S.J. & Zukin, R.S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Bowie, D., Lange, G.D. & Mayer, M.L. Activity-dependent modulation of glutamate receptors by polyamines. J. Neurosci. 18, 8175–8185 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, S.Q.J. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Gardner, S.M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45, 903–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Man, H.Y. GluA2-lacking, calcium-permeable AMPA receptors—inducers of plasticity? Curr. Opin. Neurobiol. 21, 291–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Priel, A. et al. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J. Neurosci. 25, 2682–2686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Turetsky, D., Garringer, E. & Patneau, D.K. Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J. Neurosci. 25, 7438–7448 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bedoukian, M.A., Weeks, A.M. & Partin, K.M. Different domains of the AMPA receptor direct stargazin-mediated trafficking and stargazin-mediated modulation of kinetics. J. Biol. Chem. 281, 23908–23921 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Cho, C.H., St-Gelais, F., Zhang, W., Tomita, S. & Howe, J.R. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 55, 890–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Kott, S., Sager, C., Tapken, D., Werner, M. & Hollmann, M. Comparative analysis of the pharmacology of GluR1 in complex with transmembrane AMPA receptor regulatory proteins γ 2, γ3, γ4, and γ 8. Neuroscience 158, 78–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kato, A.S. et al. New transmembrane AMPA receptor regulatory protein isoform, γ-7, differentially regulates AMPA receptors. J. Neurosci. 27, 4969–4977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soto, D. et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5. Nat. Neurosci. 12, 277–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukaya, M., Yamazaki, M., Sakimura, K. & Watanabe, M. Spatial diversity in gene expression for VDCCγ subunit family in developing and adult mouse brains. Neurosci. Res. 53, 376–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Yamazaki, M. et al. TARPs γ-2 and γ-7 are essential for AMPA receptor expression in the cerebellum. Eur. J. Neurosci. 31, 2204–2220 (2010).

    Article  PubMed  Google Scholar 

  30. Jackson, A.C. & Nicoll, R.A. Stargazin (TARP γ-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. J. Neurosci. 31, 3939–3952 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bats, C., Soto, D., Studniarczyk, D., Farrant, M. & Cull-Candy, S.G. Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat. Neurosci. 15, 853–861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hashimoto, K. et al. Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J. Neurosci. 19, 6027–6036 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Gallo, V. et al. Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum. J. Neurosci. 12, 1010–1023 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A. & Cull-Candy, S.G. Changes in synaptic structure underlie the developmental speeding of AMPA receptor–mediated EPSCs. Nat. Neurosci. 8, 1310–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Schwenk, J. et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323, 1313–1319 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, Y. et al. Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating. Proc. Natl. Acad. Sci. USA 107, 16315–16319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soto, D., Coombs, I.D., Kelly, L., Farrant, M. & Cull-Candy, S.G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Washburn, M.S. & Dingledine, R. Block of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J. Pharmacol. Exp. Ther. 278, 669–678 (1996).

    CAS  PubMed  Google Scholar 

  42. Koike, M., Iino, M. & Ozawa, S. Blocking effect of 1-naphthyl acetyl spermine on Ca2+-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci. Res. 29, 27–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Blaschke, M. et al. A single amino acid determines the subunit-specific spider toxin block of α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proc. Natl. Acad. Sci. USA 90, 6528–6532 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Menuz, K., O'Brien, J.L., Karmizadegan, S., Bredt, D.S. & Nicoll, R.A. TARP redundancy is critical for maintaining AMPA receptor function. J. Neurosci. 28, 8740–8746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kato, A.S., Siuda, E.R., Nisenbaum, E.S. & Bredt, D.S. AMPA receptor subunit–specific regulation by a distinct family of type II TARPs. Neuron 59, 986–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Rouach, N. et al. TARP γ-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat. Neurosci. 8, 1525–1533 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Shi, Y., Lu, W., Milstein, A.D. & Nicoll, R.A. The stoichiometry of AMPA receptors and TARPs varies by neuronal cell type. Neuron 62, 633–640 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, K.S., Yan, D. & Tomita, S. Assembly and stoichiometry of the AMPA receptor and transmembrane AMPA receptor regulatory protein complex. J. Neurosci. 30, 1064–1072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan, D. & Tomita, S. Defined criteria for auxiliary subunits of glutamate receptors. J. Physiol. (Lond.) 590, 21–31 (2012).

    Article  CAS  Google Scholar 

  50. Letts, V.A. et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat. Genet. 19, 340–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferron, L. et al. The stargazin-related protein γ 7 interacts with the mRNA-binding protein heterogeneous nuclear ribonucleoprotein A2 and regulates the stability of specific mRNAs, including CaV2.2. J. Neurosci. 28, 10604–10617 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chung, C., Deak, F. & Kavalali, E.T. Molecular substrates mediating lanthanide-evoked neurotransmitter release in central synapses. J. Neurophysiol. 100, 2089–2100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kudoh, S.N. & Taguchi, T. A simple exploratory algorithm for the accurate and fast detection of spontaneous synaptic events. Biosens. Bioelectron. 17, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Traynelis, S.F., Silver, R.A. & Cull-Candy, S.G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing (Academic Press, Amsterdam, Boston, 2012).

  58. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. Cluster analysis basics and extensions. R package version 1.14.3. (2012).

Download references

Acknowledgements

This work was supported by Programme Grants from the Wellcome Trust and the Medical Research Council (S.G.C.-C. and M.F.). We thank M. Watanabe for antibodies against γ-2 and γ-7, R. Nicoll for TARP γ-2 cDNA, C. Bats for invaluable discussions and M. Zonouzi and M. Watanabe for advice on coimmunoprecipitation.

Author information

Authors and Affiliations

Authors

Contributions

S.G.C.-C. and M.F. conceived and supervised the project. D.S. performed electrophysiological and biochemical experiments. M.F. and D.S. analyzed the data. I.C. generated reagents for RNA interference and performed biochemical experiments. D.S., S.G.C.-C. and M.F. wrote the manuscript.

Corresponding authors

Correspondence to Stuart G Cull-Candy or Mark Farrant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–3 and Supplementary Tables 1–4 (PDF 1043 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studniarczyk, D., Coombs, I., Cull-Candy, S. et al. TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nat Neurosci 16, 1266–1274 (2013). https://doi.org/10.1038/nn.3473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing