Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TMEM16C facilitates Na+-activated K+ currents in rat sensory neurons and regulates pain processing

Abstract

TMEM16C belongs to the TMEM16 family, which includes the Ca2+-activated Cl channels TMEM16A and TMEM16B and a small-conductance, Ca2+-activated, nonselective cation channel (SCAN), TMEM16F. We found that in rat dorsal root ganglia (DRG) TMEM16C was expressed mainly in the IB4-positive, non-peptidergic nociceptors that also express the sodium-activated potassium (KNa) channel Slack. Together these channel proteins promote KNa channel activity and dampen neuronal excitability. DRG from TMEM16C knockout rats had diminished Slack expression, broadened action potentials and increased excitability. Moreover, the TMEM16C knockout rats, as well as rats with Slack knockdown by intrathecal injection of short interfering RNA, exhibited increased thermal and mechanical sensitivity. Experiments involving heterologous expression in HEK293 cells further showed that TMEM16C modulated the single-channel activity of Slack channels and increased its sodium sensitivity. Our study thus reveals that TMEM16C enhances KNa channel activity in DRG neurons and regulates the processing of pain messages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of TMEM16C in dorsal root ganglia and spinal cord.
Figure 2: TMEM16C modulates thermal and mechanical withdrawal thresholds and the action potential width of DRG neurons.
Figure 3: The KNa current is reduced in DRG neurons from TMEM16C knockout rats.
Figure 4: Expression of Slack in the DRG and spinal cord.
Figure 5: TMEM16C interacts with Slack and knockdown of Slack in rat DRGs increases pain responsiveness.
Figure 6: TMEM16C modulates Slack channel activity in HEK293 cells.

Similar content being viewed by others

References

  1. Yang, Y.D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Schroeder, B.C., Cheng, T., Jan, Y.N. & Jan, L.Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019–1029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caputo, A. et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, F. et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl. Acad. Sci. USA 109, 16354–16359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang, F. et al. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc. Natl. Acad. Sci. USA 106, 21413–21418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho, H. et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 1015–1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Stöhr, H. et al. TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J. Neurosci. 29, 6809–6818 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Huang, W.C. et al. Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74, 179–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Billig, G.M., Pal, B., Fidzinski, P. & Jentsch, T.J. Ca2+-activated Cl currents are dispensable for olfaction. Nat. Neurosci. 14, 763–769 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, H. et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151, 111–122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suzuki, J., Umeda, M., Sims, P.J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Oldham, M.C., Horvath, S. & Geschwind, D.H. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl. Acad. Sci. USA 103, 17973–17978 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Briones, N. & Dinu, V. Data mining of high density genomic variant data for prediction of Alzheimer's disease risk. BMC Med. Genet. 13, 7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charlesworth, G. et al. Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am. J. Hum. Genet. 91, 1041–1050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, J.B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Snider, W.D. & McMahon, S.B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Dong, X., Han, S., Zylka, M.J., Simon, M.I. & Anderson, D.J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Julius, D. & Basbaum, A.I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Noël, J. et al. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308–1318 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vivancos, G.G. et al. An electronic pressure-meter nociception paw test for rats. Braz. J. Med. Biol. Res. 37, 391–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Stucky, C.L. & Lewin, G.R. Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J. Neurosci. 19, 6497–6505 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tian, Y., Schreiber, R. & Kunzelmann, K. Anoctamins are a family of Ca2+ activated Cl channels. J. Cell Sci. 125, 4991–4998 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Duran, C., Qu, Z., Osunkoya, A.O., Cui, Y. & Hartzell, H.C. ANOs 3–7 in the anoctamin/Tmem16 Cl channel family are intracellular proteins. Am. J. Physiol. Cell Physiol. 302, C482–C493 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Leffler, A., Herzog, R.I., Dib-Hajj, S.D., Waxman, S.G. & Cummins, T.R. Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Arch. 451, 454–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kuo, C.C., Lin, T.J. & Hsieh, C.P. Effect of Na+ flow on Cd2+ block of tetrodotoxin-resistant Na+ channels. J. Gen. Physiol. 120, 159–172 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rush, A.M., Cummins, T.R. & Waxman, S.G. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol. (Lond.) 579, 1–14 (2007).

    Article  CAS  Google Scholar 

  29. Huang, Y., Quayle, J.M., Worley, J.F., Standen, N.B. & Nelson, M.T. External cadmium and internal calcium block of single calcium channels in smooth muscle cells from rabbit mesenteric artery. Biophys. J. 56, 1023–1028 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryglewski, S., Pflueger, H.J. & Duch, C. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation. PLoS Biol. 5, e66 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Catterall, W.A., Perez-Reyes, E., Snutch, T.P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Blair, N.T. & Bean, B.P. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J. Neurosci. 22, 10277–10290 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamsett, T.J., Picchione, K.E. & Bhattacharjee, A. NAD+ activates KNa channels in dorsal root ganglion neurons. J. Neurosci. 29, 5127–5134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nanou, E. et al. Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission. Proc. Natl. Acad. Sci. USA 105, 20941–20946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhattacharjee, A. & Kaczmarek, L.K. For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 28, 422–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Yuan, A. et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765–773 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kamiyama, D. & Huang, B. Development in the STORM. Dev. Cell 23, 1103–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heninger, A.K. & Buchholz, F. Production of endoribonuclease-prepared short interfering RNAs (esiRNAs) for specific and effective gene silencing in mammalian cells. CSH Protoc. 2007, pdb.prot4824 (2007).

  39. Luo, M.C. et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol. Pain 1, 29 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Joiner, W.J. et al. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat. Neurosci. 1, 462–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Bhattacharjee, A. et al. Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J. Neurosci. 23, 11681–11691 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Budelli, G. et al. Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat. Neurosci. 12, 745–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Renganathan, M., Cummins, T.R. & Waxman, S.G. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Fang, X. et al. The presence and role of the tetrodotoxin-resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons. J. Neurosci. 22, 7425–7433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang, X., McMullan, S., Lawson, S.N. & Djouhri, L. Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo. J. Physiol. (Lond.) 565, 927–943 (2005).

    Article  CAS  Google Scholar 

  46. Lu, B. et al. Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mamm. Genome 18, 338–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Cavanaugh, D.J. et al. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J. Neurosci. 31, 10119–10127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kittler, R. et al. Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nat. Methods 4, 337–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Brown, M.R. et al. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. J. Physiol. (Lond.) 586, 5161–5179 (2008).

    Article  CAS  Google Scholar 

  50. Yang, B., Desai, R. & Kaczmarek, L.K. Slack and Slick KNa channels regulate the accuracy of timing of auditory neurons. J. Neurosci. 27, 2617–2627 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beaudoin, G.M. III et al. Afadin, a Ras/Rap effector that controls cadherin function, promotes spine and excitatory synapse density in the hippocampus. J. Neurosci. 32, 99–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Tynan La Fontaine and D. Wang for the assistance with the rodent genotyping and husbandry. We thank T. Jin, H. Yang, W. Zhang, W. Ge, T. Wang, C. Peters, S. Xiao, T. Cheng, J. Berg and Z. Guan for technical help and discussions. We thank J. Crawford at Transposagen for administrative assistance. This study is supported by grants from the US National Institutes of Health (NIH) to L.Y.J. and A.I.B. and grants from the NIH and the Commonwealth of Kentucky to E.M.O. Y.-N.J. and L.Y.J. are supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

F.H. carried out the immunocytochemistry, molecular biology and electrophysiological studies and analyzed the data; F.H. and X.W. carried out behavioral studies and analyzed the data. T.N. and B.H. performed the STORM imaging and data analysis. E.M.O. generated the knockout rats. F.H., L.Y.J. and A.I.B. wrote the manuscript. L.Y.J. and Y.-N.J. supervised the studies.

Corresponding author

Correspondence to Lily Yeh Jan.

Ethics declarations

Competing interests

E.M.O. is employed by Transposagen Biopharmaceuticals, Inc.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–9 (PDF 1073 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., Wang, X., Ostertag, E. et al. TMEM16C facilitates Na+-activated K+ currents in rat sensory neurons and regulates pain processing. Nat Neurosci 16, 1284–1290 (2013). https://doi.org/10.1038/nn.3468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing