Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct recordings of grid-like neuronal activity in human spatial navigation

Abstract

Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats and monkeys, are believed to support a wide range of spatial behaviors. Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Virtual navigation task.
Figure 2: Examples of grid-like spatial firing.
Figure 3: Population measurements of cells exhibiting significant grid-like spatial firing.

References

  1. O'Keefe, J. & Dostrovsky, J. Brain Res. 34, 171–175 (1971).

    CAS  Article  Google Scholar 

  2. Ekstrom, A.D. et al. Nature 425, 184–188 (2003).

    CAS  Article  Google Scholar 

  3. McHugh, T.J. et al. Cell 87, 1339–1349 (1996).

    CAS  Article  Google Scholar 

  4. Ulanovsky, N. & Moss, C. Nat. Neurosci. 10, 224–233 (2007).

    CAS  Article  Google Scholar 

  5. Muller, R.U. et al. J. Neurosci. 7, 1935–1950 (1987).

    CAS  Article  Google Scholar 

  6. Quirk, G.J. et al. J. Neurosci. 10, 2008–2017 (1990).

    CAS  Article  Google Scholar 

  7. Hafting, T. et al. Nature 436, 801–806 (2005).

    CAS  Article  Google Scholar 

  8. Yartsev, M.M. et al. Nature 479, 103–107 (2011).

    CAS  Article  Google Scholar 

  9. Killian, N.J. et al. Nature 491, 761–764 (2012).

    CAS  Article  Google Scholar 

  10. Sargolini, F. et al. Science 312, 758–762 (2006).

    CAS  Article  Google Scholar 

  11. Doeller, C.F., Barry, C. & Burgess, N. Nature 463, 657–661 (2010).

    CAS  Article  Google Scholar 

  12. Jacobs, J. & Kahana, M.J. Trends Cogn. Sci. 14, 162–171 (2010).

    Article  Google Scholar 

  13. Jacobs, J. et al. Proc. Natl. Acad. Sci. USA 107, 6487–6492 (2010).

    CAS  Article  Google Scholar 

  14. Bird, C.M. & Burgess, N. Nat. Rev. Neurosci. 9, 182–194 (2008).

    CAS  Article  Google Scholar 

  15. Rolls, E.T. Hippocampus 9, 467–480 (1999).

    CAS  Article  Google Scholar 

  16. Krupic, J., Burgess, N. & O'Keefe, J. Science 337, 853–857 (2012).

    CAS  Article  Google Scholar 

  17. Terrazas, A. et al. J. Neurosci. 25, 8085–8096 (2005).

    CAS  Article  Google Scholar 

  18. Buzsáki, G. & Moser, E. Nat. Neurosci. 16, 130–138 (2013).

    Article  Google Scholar 

  19. Hargreaves, E.L. et al. Science 308, 1792–1794 (2005).

    CAS  Article  Google Scholar 

  20. Tsao, A. et al. Curr. Biol. 23, 399–405 (2013).

    CAS  Article  Google Scholar 

  21. Quiroga, R.Q. et al. Neural Comput. 16, 1661–1687 (2004).

    Article  Google Scholar 

  22. Hill, D.N., Mehta, S. & Kleinfeld, D. J. Neurosci. 31, 8699–8705 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients for participating in our study. We thank K. Lee, D. Wyeth, E. Wyeth, D. Pourshaban, E. Behnke and T. Fields for technical assistance. This work was supported by US National Institutes of Health grants MH061975 and NS033221.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed by J.J., C.T.W., M.J.K., A.S. and I.F. Data were collected by J.J., C.T.W., J.F.M., J.F.B., I.F., M.R.S., A.D.S. and N.S. Data analyses were performed by J.J., X.-X.W., C.T.W., A.S. and M.J.K. J.J. and M.J.K. wrote the manuscript.

Corresponding authors

Correspondence to Joshua Jacobs, Itzhak Fried or Michael J Kahana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 2170 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jacobs, J., Weidemann, C., Miller, J. et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 16, 1188–1190 (2013). https://doi.org/10.1038/nn.3466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3466

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing