Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular mechanisms of brain state–dependent gain modulation in visual cortex

Abstract

Visual cortical neurons fire at higher rates to visual stimuli during locomotion than during immobility, while maintaining orientation selectivity. The mechanisms underlying this change in gain are not understood. We performed whole-cell recordings from layer 2/3 and layer 4 visual cortical excitatory neurons and from parvalbumin-positive and somatostatin-positive inhibitory neurons in mice that were free to rest or run on a spherical treadmill. We found that the membrane potential of all cell types became more depolarized and (with the exception of somatostatin-positive interneurons) less variable during locomotion. Cholinergic input was essential for maintaining the unimodal membrane potential distribution during immobility, whereas noradrenergic input was necessary for the tonic depolarization associated with locomotion. Our results provide a mechanism for how neuromodulation controls the gain and signal-to-noise ratio of visual cortical neurons during changes in the state of vigilance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous activity of L2/3 neurons during stationary and locomotion periods.
Figure 2: Locomotion is associated with an increase in the gain of L2/3 excitatory neurons.
Figure 3: Effect of locomotion on Vm of L2/3 PV+ interneurons.
Figure 4: Effect of locomotion on the intracellular activity of L2/3 SOM+ interneurons.
Figure 5: L4 neuron signal-to-noise ratio increases during locomotion.
Figure 6: Effect of cholinergic antagonists on the L2/3 neuron Vm during stationary and locomotion periods.
Figure 7: Effect of norepinephrine antagonists on the Vm of L2/3 neurons during stationary and locomotion periods.
Figure 8: Effect of glutamatergic antagonists on the Vm of L2/3 neurons during stationary and locomotion periods.

Similar content being viewed by others

References

  1. Harris, K.D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ringach, D.L. Spontaneous and driven cortical activity: implications for computation. Curr. Opin. Neurobiol. 19, 439–444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Steriade, M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276 (2000).

    CAS  PubMed  Google Scholar 

  4. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    PubMed  Google Scholar 

  5. Hasenstaub, A., Sachdev, R.N. & McCormick, D.A. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27, 9607–9622 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Crochet, S. & Petersen, C.C.H. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    CAS  PubMed  Google Scholar 

  7. Bereshpolova, Y., Amitai, Y., Gusev, A.G., Stoelzel, C.R. & Swadlow, H.A. Dendritic backpropagation and the state of the awake neocortex. J. Neurosci. 27, 9392–9399 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Niell, C.M. & Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Keller, G.B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).

    CAS  PubMed  Google Scholar 

  10. Szuts, T.A. et al. A wireless multi-channel neural amplifier for freely moving animals. Nat. Neurosci. 14, 263–269 (2011).

    CAS  PubMed  Google Scholar 

  11. Lee, S.H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson, N.R., Runyan, C.A., Wang, F.L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Atallah, B.V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12, 1444–1449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonchar, Y., Wang, Q. & Burkhalter, A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat. 1, 3 (2007).

    PubMed  Google Scholar 

  16. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  Google Scholar 

  17. Herrero, J.L. et al. Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454, 1110–1114 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Constantinople, C.M. & Bruno, R.M. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 1061–1068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Steriade, M., Amzica, F. & Nunez, A. Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70, 1385–1400 (1993).

    CAS  PubMed  Google Scholar 

  20. Berridge, C.W., Page, M.E., Valentino, R.J. & Foote, S.L. Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. Neuroscience 55, 381–393 (1993).

    CAS  PubMed  Google Scholar 

  21. Metherate, R., Cox, C. & Ashe, J. Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosci. 12, 4701–4711 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarter, M. & Bruno, J.P. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 95, 933–952 (2000).

    CAS  PubMed  Google Scholar 

  23. Sato, H., Hata, Y., Hagihara, K. & Tsumoto, T. Effects of cholinergic depletion on neuron activities in the cat visual cortex. J. Neurophysiol. 58, 781–794 (1987).

    CAS  PubMed  Google Scholar 

  24. Müller, C.M. & Singer, W. Acetylcholine-induced inhibition in the cat visual cortex is mediated by a GABAergic mechanism. Brain Res. 487, 335–342 (1989).

    PubMed  Google Scholar 

  25. Rodriguez, R., Kallenbach, U., Singer, W. & Munk, M.H. Stabilization of visual responses through cholinergic activation. Neuroscience 165, 944–954 (2010).

    CAS  PubMed  Google Scholar 

  26. Berridge, C.W. & Waterhouse, B.D. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).

    PubMed  Google Scholar 

  27. Foote, S.L., Aston-Jones, G. & Bloom, F.E. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA 77, 3033–3037 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chance, F.S., Abbott, L.F. & Reyes, A.D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    CAS  PubMed  Google Scholar 

  29. Fellous, J.M., Rudolph, M., Destexhe, A. & Sejnowski, T.J. Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122, 811–829 (2003).

    CAS  PubMed  Google Scholar 

  30. Haider, B., Duque, A., Hasenstaub, A.R., Yu, Y. & McCormick, D.A. Enhancement of visual responsiveness by spontaneous local network activity in vivo. J. Neurophysiol. 97, 4186–4202 (2007).

    PubMed  Google Scholar 

  31. Anderson, J.S., Lampl, I., Gillespie, D.C. & Ferster, D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–1972 (2000).

    CAS  PubMed  Google Scholar 

  32. Poulet, J.F.A. & Petersen, C.C.H. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    CAS  PubMed  Google Scholar 

  33. Sanchez-Vives, M.V. et al. Inhibitory modulation of cortical up states. J. Neurophysiol. 104, 1314–1324 (2010).

    PubMed  Google Scholar 

  34. Hasenstaub, A. et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47, 423–435 (2005).

    CAS  PubMed  Google Scholar 

  35. Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F. & Petersen, C.C. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    CAS  PubMed  Google Scholar 

  36. Gentet, L.J. et al. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612 (2012).

    CAS  PubMed  Google Scholar 

  37. McCormick, D.A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992).

    CAS  PubMed  Google Scholar 

  38. Alitto, H.J. & Dan, Y. Cell type–specific modulation of neocortical activity by basal forebrain input. Front. Syst. Neurosci. 6, 79 (2012).

    PubMed  Google Scholar 

  39. Botly, L.C. & De Rosa, E. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb. Cortex 22, 2441–2453 (2012).

    PubMed  Google Scholar 

  40. Soma, S., Shimegi, S., Osaki, H. & Sato, H. Cholinergic modulation of response gain in the primary visual cortex of the macaque. J. Neurophysiol. 107, 283–291 (2012).

    CAS  PubMed  Google Scholar 

  41. Sanchez-Vives, M.V. & McCormick, D.A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    CAS  PubMed  Google Scholar 

  42. Langlois, M. et al. Involvement of the thalamic parafascicular nucleus in mesial temporal lobe epilepsy. J. Neurosci. 30, 16523–16535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Buchanan, J.A. & Bilkey, D.K. Transfer between atropine-induced spiking in the perirhinal cortex and electrical kindling of the amygdala. Brain Res. 771, 63–70 (1997).

    CAS  PubMed  Google Scholar 

  44. Wang, Z. & McCormick, D.A. Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine and 1S,3R-ACPD. J. Neurosci. 13, 2199–2216 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McCormick, D.A., Wang, Z. & Huguenard, J. Neurotransmitter control of neocortical neuronal activity and excitability. Cereb. Cortex 3, 387–398 (1993).

    CAS  PubMed  Google Scholar 

  46. Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F. & Bear, M.F. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J. Neurosci. 19, 1599–1609 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mueller, D., Porter, J.T. & Quirk, G.J. Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J. Neurosci. 28, 369–375 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawaguchi, Y. & Shindou, T. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J. Neurosci. 18, 6963–6976 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  PubMed  Google Scholar 

  50. Klinkenberg, I., Sambeth, A. & Blokland, A. Acetylcholine and attention. Behav. Brain Res. 221, 430–442 (2011).

    CAS  PubMed  Google Scholar 

  51. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    PubMed  PubMed Central  Google Scholar 

  52. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ringach, D.L., Shapley, R.M. & Hawken, M.J. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Gruver for technical assistance on visual stimulation, Z. Peng and C. Houser for histology, and D. Contreras, M. Einstein, T. Indersmitten, M. Javaherian, C. Kaba, S. Mahon, A. Silva and S. Singh for their thoughtful comments on the manuscript. This work was supported by the US National Institutes of Health (KO8 NS0562101), the Whitehall Foundation (grant 2012-05-83) and a Veterans Affairs Merit Review Award (1I01BX001524-01A1).

Author information

Authors and Affiliations

Authors

Contributions

P.-O.P. and P.G. conceived and designed the experiments. P.-O.P., J.F. and P.G. built the experimental setup. P.-O.P. acquired and analyzed the experimental data. P.-O.P. and P.G. wrote the manuscript.

Corresponding author

Correspondence to Peyman Golshani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–5 and Supplementary Tables 1–5 (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polack, PO., Friedman, J. & Golshani, P. Cellular mechanisms of brain state–dependent gain modulation in visual cortex. Nat Neurosci 16, 1331–1339 (2013). https://doi.org/10.1038/nn.3464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing