Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developmental origins of central norepinephrine neuron diversity

Abstract

Central norepinephrine-producing neurons comprise a diverse population of cells differing in anatomical location, connectivity, function and response to disease and environmental insult. The mechanisms that generate this diversity are unknown. Here we elucidate the lineal relationship between molecularly distinct progenitor populations in the developing mouse hindbrain and mature norepinephrine neuron subtype identity. We have identified four genetically separable subpopulations of mature norepinephrine neurons differing in their anatomical location, axon morphology and efferent projection pattern. One of the subpopulations showed an unexpected projection to the prefrontal cortex, challenging the long-held belief that the locus coeruleus is the sole source of norepinephrine projections to the cortex. These findings reveal the embryonic origins of central norepinephrine neurons and provide multiple molecular points of entry for future study of individual norepinephrine circuits in complex behavioral and physiological processes including arousal, attention, mood, memory, appetite and homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Intersectional genetic fate mapping strategy distinguishes r1(En1cre)-derived from non-r1-derived norepinephrine neurons.
Figure 2: Complementary fate maps reveal the distribution of rhombomere-derived norepinephrine subpopulations in the pontine norepinephrine nuclei.
Figure 3: r3&5(Krox20cre)- and r4(Hoxb1cre)-derived norepinephrine neurons populate the medullary C1/A1 and C2/A2 brainstem nuclei.
Figure 4: Distribution of central norepinephrine neurons defined by genetic lineage differs from the traditional anatomical subdivisions.
Figure 5: r2(Hoxa2-cre)- and r3&5(Krox20cre)-derived norepinephrine neurons project to limited targets.
Figure 6: r1(En1cre)- and r4(Hoxb1cre)-derived norepinephrine neurons differ in their axon morphology at multiple target sites.
Figure 7: Genetically defined norepinephrine subpopulations project to unique sets of targets.
Figure 8: Identification of a shared projection to the insular cortex from r4(Hoxb1cre)-derived norepinephrine neurons residing in the C2/A2, C1/A1 and SubC nuclei.

References

  1. 1

    Berridge, C.W. & Waterhouse, B.D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84 (2003).

    Article  Google Scholar 

  2. 2

    Rinaman, L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R222–R235 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Sara, S.J. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76, 130–141 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Dahlström, A. & Fuxe, K. Evidence for the existence of monoamine containing neurons in the central nervous system, I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62 (suppl. 232): 1–55 (1964).

    Google Scholar 

  5. 5

    Grzanna, R. & Fritschy, J.M. Efferent projections of different subpopulations of central noradrenaline neurons. Prog. Brain Res. 88, 89–101 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    German, D.C. et al. Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol. 32, 667–676 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Brunnström, H., Friberg, N., Lindberg, E. & Englund, E. Differential degeneration of the locus coeruleus in dementia subtypes. Clin. Neuropathol. 30, 104–110 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Benarroch, E.E., Schmeichel, A.M., Low, P.A., Sandroni, P. & Parisi, J.E. Loss of A5 noradrenergic neurons in multiple system atrophy. Acta Neuropathol. 115, 629–634 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Bertrand, E., Lechowicz, W., Szpak, G.M. & Dymecki, J. Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson's disease. Folia Neuropathol. 35, 80–86 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Miller, M.A., Kolb, P.E., Leverenz, J.B., Peskind, E.R. & Raskind, M.A. Preservation of noradrenergic neurons in the locus ceruleus that coexpress galanin mRNA in Alzheimer's disease. J. Neurochem. 73, 2028–2036 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Busch, C., Bohl, J. & Ohm, T.G. Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol. Aging 18, 401–406 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Mohideen, S.S., Ichihara, G., Ichihara, S. & Nakamura, S. Exposure to 1-bromopropane causes degeneration of noradrenergic axons in the rat brain. Toxicology 285, 67–71 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Soulage, C. et al. Central and peripheral changes in catecholamine biosynthesis and turnover in rats after a short period of ozone exposure. Neurochem. Int. 45, 979–986 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Del Pino, J. et al. Effects of prenatal and postnatal exposure to amitraz on norepinephrine, serotonin and dopamine levels in brain regions of male and female rats. Toxicology 287, 145–152 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Slotkin, T.A. & Seidler, F.J. Mimicking maternal smoking and pharmacotherapy of preterm labor: fetal nicotine exposure enhances the effect of late gestational dexamethasone treatment on noradrenergic circuits. Brain Res. Bull. 86, 435–440 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Swanson, L.W. The locus coeruleus: a cytoarchitectonic, Golgi and immunohistochemical study in the albino rat. Brain Res. 110, 39–56 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Dymecki, S.M. & Kim, J.C. Molecular neuroanatomy's “three Gs”: a primer. Neuron 54, 17–34 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Champagnat, J., Morin-Surun, M.P., Fortin, G. & Thoby-Brisson, M. Developmental basis of the rostro-caudal organization of the brainstem respiratory rhythm generator. Phil. Trans. R. Soc. Lond. B 364, 2469–2476 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Gray, P.A. et al. Developmental origin of preBotzinger complex respiratory neurons. J. Neurosci. 30, 14883–14895 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Grossmann, K.S., Giraudin, A., Britz, O., Zhang, J. & Goulding, M. Genetic dissection of rhythmic motor networks in mice. Prog. Brain Res. 187, 19–37 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Dasen, J.S. & Jessell, T.M. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88, 169–200 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Krumlauf, R. et al. Hox homeobox genes and regionalisation of the nervous system. J. Neurobiol. 24, 1328–1340 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Chambers, D. et al. Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain. Neural Dev. 4, 6 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25

    Aroca, P., Lorente-Canovas, B., Mateos, F.R. & Puelles, L. Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: Studies in chick and mouse embryos. J. Comp. Neurol. 496, 802–818 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Gaufo, G.O., Wu, S. & Capecchi, M.R. Contribution of Hox genes to the diversity of the hindbrain sensory system. Development 131, 1259–1266 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Simon, H.H., Scholz, C. & O'Leary, D.D. Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-dependent manner. Mol. Cell Neurosci. 28, 96–105 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Awatramani, R., Soriano, P., Rodriguez, C., Mai, J.J. & Dymecki, S.M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Farago, A.F., Awatramani, R.B. & Dymecki, S.M. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50, 205–218 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Jensen, P. et al. Redefining the serotonergic system by genetic lineage. Nat. Neurosci. 11, 417–419 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Bang, S.J., Jensen, P., Dymecki, S.M. & Commons, K.G. Projections and interconnections of genetically defined serotonin neurons in mice. Eur. J. Neurosci. 35, 85–96 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Engleka, K.A. et al. Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ. Res. 110, 922–926 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Li, J.Y., Lao, Z. & Joyner, A.L. Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 36, 31–43 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Voiculescu, O., Charnay, P. & Schneider-Maunoury, S. Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis 26, 123–126 (2000).

    CAS  Article  Google Scholar 

  35. 35

    O'Gorman, S. Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Dev. Dyn. 234, 124–131 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Goridis, C. & Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci. 3, 531–541 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Elsevier Academic, 2004).

  38. 38

    Hökfelt, T., Fuxe, K., Goldstein, M. & Johansson, O. Evidence for adrenaline neurons in the rat brain. Acta Physiol. Scand. 89, 286–288 (1973).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Garel, S., Garcia-Dominguez, M. & Charnay, P. Control of the migratory pathway of facial branchiomotor neurones. Development 127, 5297–5307 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Fritschy, J.M. & Grzanna, R. Distribution of locus coeruleus axons within the rat brainstem demonstrated by Phaseolus vulgaris leucoagglutinin anterograde tracing in combination with dopamine-beta-hydroxylase immunofluorescence. J. Comp. Neurol. 293, 616–631 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Lorang, D., Amara, S.G. & Simerly, R.B. Cell-type-specific expression of catecholamine transporters in the rat brain. J. Neurosci. 14, 4903–4914 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Sawchenko, P.E. & Swanson, L.W. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214, 685–687 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Mejías-Aponte, C.A., Drouin, C. & Aston-Jones, G. Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: prominent inputs from medullary homeostatic centers. J. Neurosci. 29, 3613–3626 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45

    Chandler, D. & Waterhouse, B.D. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front. Behav. Neurosci. 6, 20 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Forray, M.I., Gysling, K., Andres, M.E., Bustos, G. & Araneda, S. Medullary noradrenergic neurons projecting to the bed nucleus of the stria terminalis express mRNA for the NMDA-NR1 receptor. Brain Res. Bull. 52, 163–169 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Myers, E.A., Banihashemi, L. & Rinaman, L. The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. J. Comp. Neurol. 492, 426–441 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Davenport, P.W. & Vovk, A. Cortical and subcortical central neural pathways in respiratory sensations. Respir. Physiol. Neurobiol. 167, 72–86 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Adams, D.J. et al. A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction. Genomics 86, 753–758 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Warming, S., Costantino, N., Court, D.L., Jenkins, N.A. & Copeland, N.G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51

    Raymond, C.S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52

    Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Thomas, S.A., Marck, B.T., Palmiter, R.D. & Matsumoto, A.M. Restoration of norepinephrine and reversal of phenotypes in mice lacking dopamine beta-hydroxylase. J. Neurochem. 70, 2468–2476 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Thomas, S.A., Matsumoto, A.M. & Palmiter, R.D. Noradrenaline is essential for mouse fetal development. Nature 374, 643–646 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Lewandoski, M., Meyers, E.N. & Martin, G.R. Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb. Symp. Quant. Biol. 62, 159–168 (1997).

    CAS  Article  Google Scholar 

  56. 56

    Kimmel, R.A. et al. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14, 1377–1389 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Jin, S.H., Kim, H.J., Harris, D.C. & Thomas, S.A. Postnatal development of the cerebellum and the CNS adrenergic system is independent of norepinephrine and epinephrine. J. Comp. Neurol. 477, 300–309 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Schofield, B.R. Retrograde axonal tracing with fluorescent markers. Curr. Protoc. Neurosci. Ch. 1, Unit 1 17 (2008).

Download references

Acknowledgements

We thank S. Dymecki (Harvard Medical School) for Hoxa2-cre and RC::FrePe mice and P. Charnay (INSERM) for Krox20cre mice. We thank T. Wolfgang, G. Keeley and the National Institute of Environmental Health Sciences Fluorescence Microscopy, Vivarium, Knockout Mice and Statistics services for assistance. This research was supported by the Intramural Research Program of the US National Institutes of Health, National Institute of Environmental Health Sciences (ZIA-ES-102805).

Author information

Affiliations

Authors

Contributions

S.D.R. and P.J. conceived the project and designed the experiments. S.D.R. contributed to the execution and analysis of all of the experiments and prepared the figures. N.W.P. designed, generated and characterized the DbhFlpo mouse allele and prepared Supplementary Figure 1. J.d.M. designed and conducted the retrograde labeling study. S.D.R., N.W.P. and P.J. wrote the manuscript.

Corresponding author

Correspondence to Patricia Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–3 and Supplementary Tables 1 and 2 (PDF 2214 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Robertson, S., Plummer, N., de Marchena, J. et al. Developmental origins of central norepinephrine neuron diversity. Nat Neurosci 16, 1016–1023 (2013). https://doi.org/10.1038/nn.3458

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing