Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensory cortex limits cortical maps and drives top-down plasticity in thalamocortical circuits

Abstract

The primary somatosensory cortex (S1) contains a complete body map that mirrors the subcortical maps developed by peripheral sensory input projecting to the sensory hindbrain, the thalamus and then S1. Peripheral changes during development alter these maps through 'bottom-up' plasticity. Unknown is how S1 size influences map organization and whether an altered S1 map feeds back to affect subcortical maps. We show that the size of S1 in mice is significantly reduced by cortex-specific deletion of Pax6, resulting in a reduced body map and loss of body representations by an exclusion of later-differentiating sensory thalamocortical input. An initially normal sensory thalamus was repatterned to match the aberrant S1 map by apoptotic deletion of thalamic neurons representing body parts with axons excluded from S1. Deleted representations were rescued by altering competition between thalamocortical axons using sensory deprivation or increasing the size of S1. Thus, S1 size determined the resolution and completeness of body maps and engaged 'top-down' plasticity that repatterned the sensory thalamus to match S1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pax6 specifies S1-area identity in cortical progenitors and determines S1 size.
Figure 2: Quantification of the absolute and relative sizes of S1 representations in cKO mice.
Figure 3: S1 size dictates the resolution and completeness of the body map.
Figure 4: The VPN thalamus was repatterned in cKO mice to match the reduced size and incomplete body map of S1.
Figure 5: Trigeminal hindbrain nuclei have normal somatotopic patterning in cKO mice.
Figure 6: Top-down plasticity repatterns the VPN through exaggerated apoptosis that is selective for VPN neurons representing body parts deleted from S1 in cKO mice.
Figure 7: Late differentiation of VPN TCA representations of PMBSF row A and the ALBSF in S1.
Figure 8: Altering the competitive balance among VPN TCAs rescues representations deleted from S1 body map in cKO mice.

Similar content being viewed by others

References

  1. Kaas, J.H. The evolution of complex sensory systems in mammals. J. Exp. Biol. 146, 165–176 (1989).

    CAS  PubMed  Google Scholar 

  2. Krubitzer, L. & Kahn, D.M. Nature versus nurture revisited: an old idea with a new twist. Prog. Neurobiol. 70, 33–52 (2003).

    Article  Google Scholar 

  3. Erzurumlu, R.S., Murakami, Y. & Rijli, F.M. Mapping the face in the somatosensory brainstem. Nat. Rev. Neurosci. 11, 252–263 (2010).

    Article  CAS  Google Scholar 

  4. Erzurumlu, R.S. & Gaspar, P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci. 35, 1540–1553 (2012).

    Article  Google Scholar 

  5. Krubitzer, L.A. & Seelke, A.M. Cortical evolution in mammals: the bane and beauty of phenotypic variability. Proc. Natl. Acad. Sci. USA 109 (suppl. 1): 10647–10654 (2012).

    Article  CAS  Google Scholar 

  6. Krubitzer, L. & Kaas, J. The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Opin. Neurobiol. 15, 444–453 (2005).

    Article  CAS  Google Scholar 

  7. Krubitzer, L. In search of a unifying theory of complex brain evolution. Ann. NY Acad. Sci. 1156, 44–67 (2009).

    Article  Google Scholar 

  8. Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  9. Van Der Loos, H. Barreloids in mouse somatosensory thalamus. Neurosci. Lett. 2, 1–6 (1976).

    Article  CAS  Google Scholar 

  10. Ma, P.M. & Woolsey, T.A. Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse. Brain Res. 306, 374–379 (1984).

    Article  CAS  Google Scholar 

  11. Belford, G.R. & Killackey, H.P. The sensitive period in the development of the trigeminal system of the neonatal rat. J. Comp. Neurol. 193, 335–350 (1980).

    Article  CAS  Google Scholar 

  12. Durham, D. & Woolsey, T.A. Effects of neonatal whisker lesions on mouse central trigeminal pathways. J. Comp. Neurol. 223, 424–447 (1984).

    Article  CAS  Google Scholar 

  13. Feldman, D.E., Nicoll, R.A. & Malenka, R.C. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J. Neurobiol. 41, 92–101 (1999).

    Article  CAS  Google Scholar 

  14. Fox, K. & Wong, R.O. A comparison of experience-dependent plasticity in the visual and somatosensory systems. Neuron 48, 465–477 (2005).

    Article  CAS  Google Scholar 

  15. Fox, K. Barrel Cortex (Cambridge University Press, 2008).

  16. Andrews, T.J., Halpern, S.D. & Purves, D. Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J. Neurosci. 17, 2859–2868 (1997).

    Article  CAS  Google Scholar 

  17. White, L.E. et al. Structure of the human sensorimotor system. II: lateral symmetry. Cereb. Cortex 7, 31–47 (1997).

    Article  CAS  Google Scholar 

  18. Dougherty, R.F. et al. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3, 586–598 (2003).

    Article  Google Scholar 

  19. Higginbotham, H., Yokota, Y. & Anton, E.S. Strategies for analyzing neuronal progenitor development and neuronal migration in the developing cerebral cortex. Cereb. Cortex 21, 1465–1474 (2011).

    Article  Google Scholar 

  20. Rubenstein, J.L. Annual research review: development of the cerebral cortex: implications for neurodevelopmental disorders. J. Child Psychol. Psychiatry 52, 339–355 (2011).

    Article  Google Scholar 

  21. Leingärtner, A. et al. Cortical area size dictates performance at modality-specific behaviors. Proc. Natl. Acad. Sci. USA 104, 4153–4158 (2007).

    Article  Google Scholar 

  22. Zhou, L. et al. Maturation of “neocortex isole” in vivo in mice. J. Neurosci. 30, 7928–7939 (2010).

    Article  CAS  Google Scholar 

  23. O'Leary, D.D., Chou, S.J. & Sahara, S. Area patterning of the mammalian cortex. Neuron 56, 252–269 (2007).

    Article  CAS  Google Scholar 

  24. Bishop, K.M., Goudreau, G. & O'Leary, D.D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).

    Article  CAS  Google Scholar 

  25. Ashery-Padan, R., Marquardt, T., Zhou, X. & Gruss, P. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14, 2701–2711 (2000).

    Article  CAS  Google Scholar 

  26. Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  Google Scholar 

  27. Chou, S.J., Perez-Garcia, C.G., Kroll, T.T. & O'Leary, D.D. Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nat. Neurosci. 12, 1381–1389 (2009).

    Article  CAS  Google Scholar 

  28. Piñon, M.C., Tuoc, T.C., Ashery-Padan, R., Molnar, Z. & Stoykova, A. Altered molecular regionalization and normal thalamocortical connections in cortex-specific Pax6 knock-out mice. J. Neurosci. 28, 8724–8734 (2008).

    Article  Google Scholar 

  29. Petersen, C.C. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    Article  CAS  Google Scholar 

  30. Diaz, F. Cytochrome c oxidase deficiency: patients and animal models. Biochim. Biophys. Acta 1802, 100–110 (2010).

    Article  CAS  Google Scholar 

  31. Diaz, F., Garcia, S., Padgett, K.R. & Moraes, C.T. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum. Mol. Genet. 21, 5066–5077 (2012).

    Article  CAS  Google Scholar 

  32. Hüttemann, M. et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim. Biophys. Acta 1817, 598–609 (2012).

    Article  Google Scholar 

  33. Wallace, H. & Fox, K. Local cortical interactions determine the form of cortical plasticity. J. Neurobiol. 41, 58–63 (1999).

    Article  CAS  Google Scholar 

  34. Chou, S. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).

    Article  CAS  Google Scholar 

  35. Sapir, T. et al. Pax6 and engrailed 1 regulate two distinct aspects of renshaw cell development. J. Neurosci. 24, 1255–1264 (2004).

    Article  CAS  Google Scholar 

  36. Grant, E., Hoerder-Suabedissen, A. & Molnar, Z. Development of the corticothalamic projections. Front. Neurosci. 6, 53 (2012).

    Article  Google Scholar 

  37. Molnár, Z., Garel, S., Lopez-Bendito, G., Maness, P. & Price, D.J. Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur. J. Neurosci. 35, 1573–1585 (2012).

    Article  Google Scholar 

  38. Rhoades, R.W. et al. Development and lesion induced reorganization of the cortical representation of the rat's body surface as revealed by immunocytochemistry for serotonin. J. Comp. Neurol. 293, 190–207 (1990).

    Article  CAS  Google Scholar 

  39. Schlaggar, B.L. & O'Leary, D.D. Early development of the somatotopic map and barrel patterning in rat somatosensory cortex. J. Comp. Neurol. 346, 80–96 (1994).

    Article  CAS  Google Scholar 

  40. Vitalis, T. et al. Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J. Comp. Neurol. 393, 169–184 (1998).

    Article  CAS  Google Scholar 

  41. Waite, P.M., Li, L. & Ashwell, K.W. Developmental and lesion induced cell death in the rat ventrobasal complex. Neuroreport 3, 485–488 (1992).

    Article  CAS  Google Scholar 

  42. Courchesne, E. et al. Mapping early brain development in autism. Neuron 56, 399–413 (2007).

    Article  CAS  Google Scholar 

  43. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  Google Scholar 

  44. Courchesne, E. et al. Neuron number and size in prefrontal cortex of children with autism. J. Am. Med. Assoc. 306, 2001–2010 (2011).

    Article  CAS  Google Scholar 

  45. Tamura, R., Kitamura, H., Endo, T., Hasegawa, N. & Someya, T. Reduced thalamic volume observed across different subgroups of autism spectrum disorders. Psychiatry Res. 184, 186–188 (2010).

    Article  Google Scholar 

  46. Cheon, K.A. et al. Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: a diffusion tensor imaging study. Brain Res. 1417, 77–86 (2011).

    Article  CAS  Google Scholar 

  47. Yaworsky, P.J. & Kappen, C. Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev. Biol. 205, 309–321 (1999).

    Article  CAS  Google Scholar 

  48. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  49. Zembrzycki, A., Griesel, G., Stoykova, A. & Mansouri, A. Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain. Neural Dev. 2, 8 (2007).

    Article  Google Scholar 

  50. Rasband, W.S. ImageJ. US National Institutes of Health, Bethesda, Maryland, USA 〈http://imagej.nih.gov/ij/〉 (1997–2013).

Download references

Acknowledgements

We thank B. Higgins and H. Gutierrez for technical assistance, J. Simon (Salk Institute MultiMedia Resources) for help making Adobe Illustrator schematics, Y. Dayn (Salk Institute Transgenic Core) for help producing the nestin-Pax6TG conditional transgenic mice, K. Jones (University of Colorado) for the Emx1-IRES-cre mice, M. Goulding (Salk Institute) for the ROSA26-GAP43-eGFP mice and members of the O'Leary lab for discussion. This work was supported by US National Institutes of Health grants R01 NS31558 and R01 MH086147 and the Vincent J. Coates Chair of Molecular Neurobiology (D.D.M.O.).

Author information

Authors and Affiliations

Authors

Contributions

A.Z. and D.D.M.O. designed the study, analyzed findings, prepared figures and wrote the paper. A.Z. performed the primary experiments. S.-J.C. and D.D.M.O. designed and generated the nestin-Pax6TG conditional transgenic mice. R.A.-P. and A.S. designed and generated the Pax6 cKO mice. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dennis D M O'Leary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–6 (PDF 7802 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zembrzycki, A., Chou, SJ., Ashery-Padan, R. et al. Sensory cortex limits cortical maps and drives top-down plasticity in thalamocortical circuits. Nat Neurosci 16, 1060–1067 (2013). https://doi.org/10.1038/nn.3454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing