Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bidirectional effects of aversive learning on perceptual acuity are mediated by the sensory cortex


Although emotional learning affects sensory acuity, little is known about how these changes are facilitated in the brain. We found that auditory fear conditioning in mice elicited either an increase or a decrease in frequency discrimination acuity depending on how specific the learned response was to the conditioned tone. Using reversible pharmacological inactivation, we found that the auditory cortex mediated learning-evoked changes in acuity in both directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: AFC resulting in low and high learning specificity led to an increase and a decrease in frequency discrimination threshold (θ), respectively.
Figure 2: Learning specificity following fine AFC was negatively correlated with the frequency discrimination threshold.
Figure 3: Inactivation of the auditory cortex reversibly canceled the effect of AFC on θ, but did not affect learning specificity.


  1. 1

    Asutay, E. & Vastfjall, D. PLoS ONE 7, e38660 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Krusemark, E.A. & Li, W. Chemosens. Percept. 5, 37–45 (2012).

    Article  Google Scholar 

  3. 3

    Li, W., Howard, J., Parrish, T. & Gottfried, J. Science 319, 1842–1845 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Resnik, J., Sobel, N. & Paz, R. Nat. Neurosci. 14, 791–796 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Chapuis, J. & Wilson, D. Nat. Neurosci. 15, 155–161 (2011).

    Article  Google Scholar 

  6. 6

    Clause, A., Nguyen, T. & Kandler, K. J. Neurosci. Methods 200, 63–67 (2011).

    Article  Google Scholar 

  7. 7

    Weinberger, N.M. Nat. Rev. Neurosci. 5, 279–290 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Froemke, R.C. & Martins, A. Hear. Res. 279, 149–161 (2011).

    Article  Google Scholar 

  9. 9

    Butler, R.A., Diamond, I.T. & Neff, W.D. J. Neurophysiol. 20, 108–120 (1957).

    CAS  Article  Google Scholar 

  10. 10

    Shaban, H. et al. Nat. Neurosci. 9, 1028–1035 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Koch, M. & Schnitzler, H.U. Behav. Brain Res. 89, 35–49 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Li, L., Du, Y., Li, N., Wu, X. & Wu, Y. Neurosci. Biobehav. Rev. 33, 1157–1167 (2009).

    Article  Google Scholar 

  13. 13

    Basavaraj, S. & Yan, J. PLoS ONE 7, e45123 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Suga, N. Neurosci. Biobehav. Rev. 36, 969–988 (2012).

    Article  Google Scholar 

  15. 15

    Bajo, V.M., Nodal, F.R., Moore, D.R. & King, A.J. Nat. Neurosci. 13, 253–260 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Dahmen, J.C., Hartley, D.E. & King, A.J. J. Neurosci. 28, 13629–13639 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Fritz, J.B., David, S.V., Radtke-Schuller, S., Yin, P. & Shamma, S.A. Nat. Neurosci. 13, 1011–1019 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Pape, H.C. & Pare, D. Physiol. Rev. 90, 419–463 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Xu, W. & Sudhof, T.C. Science 339, 1290–1295 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Allen, T.A. et al. J. Neurosci. Methods 171, 30–38 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Krupa, D.J., Ghazanfar, A. & Nicolelis, M. Proc. Natl. Acad. Sci. USA 96, 8200–8205 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Talwar, S.K., Musial, P. & Gerstein, G. J. Neurophysiol. 85, 2350–2358 (2001).

    CAS  Article  Google Scholar 

Download references


We thank L. Mwilambwe-Tshilobo, D. Mohabir, A. Nguyen and L. Liu for technical assistance. M.N.G. is the recipient of the Burroughs Wellcome Fund Career Award at the Scientific Interface. The work was supported by the Klingenstein Award in Neuroscience, the Pennsylvania Lions Club Hearing Fellowship and the Penn Medicine Neuroscience Center Pilot grant to M.N.G.

Author information




M.A. and M.N.G. designed the experiments, analyzed the data, prepared the figures and wrote the manuscript. M.A. carried out the experiments.

Corresponding author

Correspondence to Maria Neimark Geffen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–10 (PDF 5857 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aizenberg, M., Geffen, M. Bidirectional effects of aversive learning on perceptual acuity are mediated by the sensory cortex. Nat Neurosci 16, 994–996 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing