Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse



Relapse to alcohol abuse is an important clinical issue that is frequently caused by cue-induced drug craving. Therefore, disruption of the memory for the cue-alcohol association is expected to prevent relapse. It is increasingly accepted that memories become labile and erasable soon after their reactivation through retrieval during a memory reconsolidation process that depends on protein synthesis. Here we show that reconsolidation of alcohol-related memories triggered by the sensory properties of alcohol itself (odor and taste) activates mammalian target of rapamycin complex 1 (mTORC1) in select amygdalar and cortical regions in rats, resulting in increased levels of several synaptic proteins. Furthermore, systemic or central amygdalar inhibition of mTORC1 during reconsolidation disrupts alcohol-associated memories, leading to a long-lasting suppression of relapse. Our findings provide evidence that the mTORC1 pathway and its downstream substrates are crucial in alcohol-related memory reconsolidation and highlight this pathway as a therapeutic target to prevent relapse.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The mTORC1 signaling pathway is activated in the CeA, mPFC and OFC after reactivation of alcohol-associated memories.
Figure 2: Reactivation of alcohol-associated memories increases the levels of synaptic proteins.
Figure 3: Inhibition of mTORC1 after reactivation of alcohol-associated memories attenuates relapse measured as instrumental responding for alcohol.
Figure 4: Infusion of rapamycin or anisomycin into the CeA after reactivation of alcohol-associated memories attenuates relapse.
Figure 5: Inhibition of mTORC1 after reactivation of alcohol-associated memories in the home cage induces a potent, long-term suppression of relapse.
Figure 6: Rapamycin does not induce place aversion.


  1. 1

    World Health Organization. WHO Global Status Report on Alcohol 2004 (Geneva, World Health Organization, 2004).

  2. 2

    Johnson, B.A. Update on neuropharmacological treatments for alcoholism: scientific basis and clinical findings. Biochem. Pharmacol. 75, 34–56 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Sinha, R. New findings on biological factors predicting addiction relapse vulnerability. Curr. Psychiatry Rep. 13, 398–405 (2011).

    Article  Google Scholar 

  4. 4

    Milton, A. Drink, drugs and disruption: memory manipulation for the treatment of addiction. Curr. Opin. Neurobiol. published online, http://dx.doi.org/10.1016/j.conb.2012.11.008 (21 December 2012).

  5. 5

    Nader, K. & Hardt, O. A single standard for memory: the case for reconsolidation. Nat. Rev. Neurosci. 10, 224–234 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Dudai, Y. Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiol. 16, 174–178 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Lee, J.L., Milton, A.L. & Everitt, B.J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J. Neurosci. 26, 10051–10056 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Xue, Y.X. et al. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 336, 241–245 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Milton, A.L. et al. Antagonism at NMDA receptors, but not β-adrenergic receptors, disrupts the reconsolidation of pavlovian conditioned approach and instrumental transfer for ethanol-associated conditioned stimuli. Psychopharmacology (Berl.) 219, 751–761 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Miller, C.A. & Sweatt, J.D. Amnesia or retrieval deficit? Implications of a molecular approach to the question of reconsolidation. Learn. Mem. 13, 498–505 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Nader, K., Schafe, G.E. & Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Hoeffer, C.A. & Klann, E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67–75 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Stoica, L. et al. Selective pharmacogenetic inhibition of mammalian target of rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc. Natl. Acad. Sci. USA 108, 3791–3796 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Wang, X. et al. Nucleus accumbens core mammalian target of rapamycin signaling pathway is critical for cue-induced reinstatement of cocaine seeking in rats. J. Neurosci. 30, 12632–12641 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Bailey, J., Ma, D. & Szumlinski, K.K. Rapamycin attenuates the expression of cocaine-induced place preference and behavioral sensitization. Addict. Biol. 17, 248–258 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Jobim, P.F. et al. Inhibition of mTOR by rapamycin in the amygdala or hippocampus impairs formation and reconsolidation of inhibitory avoidance memory. Neurobiol. Learn. Mem. 97, 105–112 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Jobim, P.F. et al. Impairment of object recognition memory by rapamycin inhibition of mTOR in the amygdala or hippocampus around the time of learning or reactivation. Behav. Brain Res. 228, 151–158 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Blundell, J., Kouser, M. & Powell, C.M. Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol. Learn. Mem. 90, 28–35 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Glover, E.M., Ressler, K.J. & Davis, M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs. cued fear memories. Learn. Mem. 17, 577–581 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Gafford, G.M., Parsons, R.G. & Helmstetter, F.J. Consolidation and reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent translation in the dorsal hippocampus. Neuroscience 182, 98–104 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Barak, S., Carnicella, S., Yowell, Q.V. & Ron, D. Glial cell line–derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. J. Neurosci. 31, 9885–9894 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Barak, S., Ahmadiantehrani, S., Kharazia, V. & Ron, D. Positive autoregulation of GDNF levels in the ventral tegmental area mediates long-lasting inhibition of excessive alcohol consumption. Transl. Psychiatry 1, e60 (2011).

    Article  Google Scholar 

  23. 23

    Carnicella, S., Amamoto, R. & Ron, D. Excessive alcohol consumption is blocked by glial cell line–derived neurotrophic factor. Alcohol 43, 35–43 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Wang, D.O., Martin, K.C. & Zukin, R.S. Spatially restricting gene expression by local translation at synapses. Trends Neurosci. 33, 173–182 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Liu-Yesucevitz, L. et al. Local RNA translation at the synapse and in disease. J. Neurosci. 31, 16086–16093 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Costa-Mattioli, M., Sossin, W.S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Takei, N. et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci. 24, 9760–9769 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Lee, C.C., Huang, C.C., Wu, M.Y. & Hsu, K.S. Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt–mammalian target of rapamycin signaling pathway. J. Biol. Chem. 280, 18543–18550 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Schratt, G.M., Nigh, E.A., Chen, W.G., Hu, L. & Greenberg, M.E. BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase–dependent pathway during neuronal development. J. Neurosci. 24, 7366–7377 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Maren, S. Synaptic mechanisms of associative memory in the amygdala. Neuron 47, 783–786 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Xu, W. PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity. Curr. Opin. Neurobiol. 21, 306–312 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Korb, E. & Finkbeiner, S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 34, 591–598 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Wang, J. et al. Long-lasting adaptations of the NR2B-containing NMDA receptors in the dorsomedial striatum play a crucial role in alcohol consumption and relapse. J. Neurosci. 30, 10187–10198 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Carnicella, S., Kharazia, V., Jeanblanc, J., Janak, P.H. & Ron, D. GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc. Natl. Acad. Sci. USA 105, 8114–8119 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Parsons, R.G., Gafford, G.M. & Helmstetter, F.J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26, 12977–12983 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Everitt, B.J., Cardinal, R.N., Hall, J., Parkinson, J. & Robbins, T. Differential involvement of amygdala subsystems in appetitive conditioning and drug addiction. in The Amygdala: a Functional Analysis (ed. Aggleton, J.P.) 353–390 (Oxford University Press, 2000).

  40. 40

    Calu, D.J., Roesch, M.R., Haney, R.Z., Holland, P.C. & Schoenbaum, G. Neural correlates of variations in event processing during learning in central nucleus of amygdala. Neuron 68, 991–1001 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Purgert, R.J., Wheeler, D.S., McDannald, M.A. & Holland, P.C. Role of amygdala central nucleus in aversive learning produced by shock or by unexpected omission of food. J. Neurosci. 32, 2461–2472 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Mahler, S.V. & Berridge, K.C. Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J. Neurosci. 29, 6500–6513 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Lingawi, N.W. & Balleine, B.W. Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J. Neurosci. 32, 1073–1081 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Pickens, C.L. et al. Neurobiology of the incubation of drug craving. Trends Neurosci. 34, 411–420 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Davis, M., Walker, D.L., Miles, L. & Grillon, C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35, 105–135 (2010).

    Article  Google Scholar 

  46. 46

    Koob, G.F. Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. Curr. Top. Behav. Neurosci. 13, 3–30 (2013).

    Article  Google Scholar 

  47. 47

    Hopf, F.W. et al. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 65, 682–694 (2010).

    CAS  Article  Google Scholar 

  48. 48

    Besheer, J. et al. Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake. Biol. Psychiatry 67, 812–822 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Neasta, J., Ben Hamida, S., Yowell, Q., Carnicella, S. & Ron, D. Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proc. Natl. Acad. Sci. USA 107, 20093–20098 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Tronson, N.C. & Taylor, J.R. Molecular mechanisms of memory reconsolidation. Nat. Rev. Neurosci. 8, 262–275 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Banko, J.L. et al. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Puighermanal, E. et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat. Neurosci. 12, 1152–1158 (2009).

    CAS  Article  Google Scholar 

  53. 53

    Cunningham, C.L., Gremel, C.M. & Groblewski, P.A. Drug-induced conditioned place preference and aversion in mice. Nat. Protoc. 1, 1662–1670 (2006).

    CAS  Article  Google Scholar 

Download references


This work was supported by US National Institutes of Health National Institute on Alcohol Abuse and Alcoholism grant P50 AA017072 (D.R. and P.H.J.) and funds from the State of California for Medical Research on Alcohol and Substance Abuse through the University of California, San Francisco (D.R. and P.H.J.). We thank S. Carnicella for critical review of the manuscript.

Author information




S.B., J.N., P.H.J. and D.R. designed the research. S.B., F.L., Q.V.Y., S.B.H., J.N. and V.K. performed the research. S.B., F.L., S.B.H., Q.V.Y., J.N. and D.R. analyzed data. S.B., P.H.J. and D.R. wrote the paper.

Corresponding authors

Correspondence to Patricia H Janak or Dorit Ron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–7 (PDF 1056 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barak, S., Liu, F., Hamida, S. et al. Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat Neurosci 16, 1111–1117 (2013). https://doi.org/10.1038/nn.3439

Download citation

Further reading