Targeting neurons and photons for optogenetics

Subjects

Abstract

Optogenetic approaches promise to revolutionize neuroscience by using light to manipulate neural activity in genetically or functionally defined neurons with millisecond precision. Harnessing the full potential of optogenetic tools, however, requires light to be targeted to the right neurons at the right time. Here we discuss some barriers and potential solutions to this problem. We review methods for targeting the expression of light-activatable molecules to specific cell types, under genetic, viral or activity-dependent control. Next we explore new ways to target light to individual neurons to allow their precise activation and inactivation. These techniques provide a precision in the temporal and spatial activation of neurons that was not achievable in previous experiments. In combination with simultaneous recording and imaging techniques, these strategies will allow us to mimic the natural activity patterns of neurons in vivo, enabling previously impossible 'dream experiments'.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Intersectional strategies for targeting optogenetic manipulation.

Marina Corral Spence

Figure 2: Viral targeting of optogenetic tools using knowledge of circuit connectivity.
Figure 3: Targeting optogene expression using single-cell electroporation.
Figure 4: Patterned illumination strategies.
Figure 5: One-photon versus two-photon activation strategies: from spines to circuits.
Figure 6: Using targeted optogenetics to enable 'dream experiments'.

References

  1. 1

    Miesenböck, G. The optogenetic catechism. Science 326, 395–399 (2009).

    Google Scholar 

  2. 2

    Bamann, C., Nagel, G. & Bamberg, E. Microbial rhodopsins in the spotlight. Curr. Opin. Neurobiol. 20, 610–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  Google Scholar 

  4. 4

    Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Kienle, E. et al. Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J. Vis. Exp. 62, 3819 (2012).

    Google Scholar 

  6. 6

    Cronin, J., Zhang, X.Y. & Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5, 387–398 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Wall, N.R., Wickersham, I.R., Cetin, A., De La Parra, M. & Callaway, E.M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl. Acad. Sci. USA 107, 21848–21853 (2010).

    Article  PubMed  Google Scholar 

  8. 8

    Tripodi, M., Stepien, A.E. & Arber, S. Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479, 61–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Yonehara, K. et al. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469, 407–410 (2011).

    Article  CAS  Google Scholar 

  10. 10

    Calame, M. et al. Retinal degeneration progression changes lentiviral vector cell targeting in the retina. PLoS ONE 6, e23782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Farrow, K. et al. Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron, doi:10.1016/j.neuron.2013.02.014 (2013).

  13. 13

    Dymecki, S.M., Ray, R.S. & Kim, J.C. Mapping cell fate and function using recombinase-based intersectional strategies. Methods Enzymol. 477, 183–213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Busskamp, V., Picaud, S., Sahel, J.A. & Roska, B. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 19, 169–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Tye, K.M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  Google Scholar 

  18. 18

    Fried, S.I., Munch, T.A. & Werblin, F.S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002).

    Article  CAS  Google Scholar 

  19. 19

    Enquist, L.W. & Card, J.P. Recent advances in the use of neurotropic viruses for circuit analysis. Curr. Opin. Neurobiol. 13, 603–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Osakada, F. et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71, 617–631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Beier, K.T. et al. Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc. Natl. Acad. Sci. USA 108, 15414–15419 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Beier, K.T. et al. Transsynaptic tracing with vesicular stomatitis virus reveals novel retinal circuitry. J. Neurosci. 33, 35–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Marshel, J.H., Mori, T., Nielsen, K.J. & Callaway, E.M. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67, 562–574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Xu, W. & Sudhof, T.C. A neural circuit for memory specificity and generalization. Science 339, 1290–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Lo, L. & Anderson, D.J.A. Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 72, 938–950 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Miyashita, T., Shao, Y.R., Chung, J., Pourzia, O. & Feldman, D.E. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front. Neural Circuits 7, 8 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Haüsser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Judkewitz, B., Rizzi, M., Kitamura, K. & Haüsser, M. Targeted single-cell electroporation of mammalian neurons in vivo. Nat. Protoc. 4, 862–869 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Reijmers, L. & Mayford, M. Genetic control of active neural circuits. Front. Mol. Neurosci. 2, 27 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    Article  CAS  Google Scholar 

  35. 35

    Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Diester, I. et al. An optogenetic toolbox designed for primates. Nat. Neurosci. 14, 387–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Gerits, A. et al. Optogenetically induced behavioral and functional network changes in primates. Curr. Biol. 22, 1722–1726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Jazayeri, M., Lindbloom-Brown, Z. & Horwitz, G.D. Saccadic eye movements evoked by optogenetic activation of primate V1. Nat. Neurosci. 15, 1368–1370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Cavanaugh, J. et al. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76, 901–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

    Article  CAS  Google Scholar 

  42. 42

    Schoenenberger, P., Scharer, Y.P. & Oertner, T.G. Channelrhodopsin as a tool to investigate synaptic transmission and plasticity. Exp. Physiol. 96, 34–39 (2011).

    Article  PubMed  Google Scholar 

  43. 43

    Hirase, H., Nikolenko, V., Goldberg, J.H. & Yuste, R. Multiphoton stimulation of neurons. J. Neurobiol. 51, 237–247 (2002).

    Article  PubMed  Google Scholar 

  44. 44

    Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  45. 45

    Cardin, J.A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    LeChasseur, Y. et al. A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 8, 319–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M. & Hirase, H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70, 124–127 (2011).

    Article  PubMed  Google Scholar 

  48. 48

    Flusberg, B.A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5, 935–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Foutz, T.J., Arlow, R.L. & McIntyre, C.C. Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. J. Neurophysiol. 107, 3235–3245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Scanziani, M. & Haüsser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Lee, S.H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383.

  53. 53

    Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2012).

    Article  CAS  Google Scholar 

  54. 54

    Royer, S. et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31, 2279–2291 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Lim, D.H. et al. In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas. Front. Neural Circuits 6, 11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Guo, Z.V., Hart, A.C. & Ramanathan, S. Optical interrogation of neural circuits. in Caenorhabditis elegans. Nat. Methods 6, 891–896 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Stroh, A. et al. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 1136–1150 (2013).

    Article  CAS  Google Scholar 

  58. 58

    Wilson, N.R., Runyan, C.A., Wang, F.L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Little, J.P. & Carter, A.G. Subcellular synaptic connectivity of layer 2 pyramidal neurons in the medial prefrontal cortex. J. Neurosci. 32, 12808–12819 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    Article  CAS  Google Scholar 

  62. 62

    Shepherd, G.M., Pologruto, T.A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Münch, T.A. et al. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12, 1308–1316 (2009).

    Article  CAS  Google Scholar 

  64. 64

    Leifer, A.M., Fang-Yen, C., Gershow, M., Alkema, M.J. & Samuel, A.D. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat. Methods 8, 147–152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Stirman, J.N. et al. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat. Methods 8, 153–158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Nikolenko, V. et al. SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front. Neural Circuits 2, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Rickgauer, J.P. & Tank, D.W. Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl. Acad. Sci. USA 106, 15025–15030 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Andrasfalvy, B.K., Zemelman, B.V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl. Acad. Sci. USA 107, 11981–11986 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Peron, S. & Svoboda, K. From cudgel to scalpel: toward precise neural control with optogenetics. Nat. Methods 8, 30–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Theer, P. & Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 3139–3149 (2006).

    Article  PubMed  Google Scholar 

  73. 73

    Ji, N., Sato, T.R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl. Acad. Sci. USA 109, 22–27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Papagiakoumou, E. et al. Functional patterned multiphoton excitation deep inside scattering tissue. Nat. Photonics 7, 274–278 (2013).

    Article  CAS  Google Scholar 

  75. 75

    Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Packer, A.M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Duemani Reddy, G., Kelleher, K., Fink, R. & Saggau, P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11, 713–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9, 201–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Kirkby, P.A., Srinivas Nadella, K.M. & Silver, R.A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt. Express 18, 13721–13745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Grewe, B.F., Langer, D., Kasper, H., Kampa, B.M. & Helmchen, F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7, 399–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    DeFelipe, J. et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. (2013).

  82. 82

    Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex 14, 1310–1327 (2004).

    Article  PubMed  Google Scholar 

  83. 83

    Siegert, S. et al. Transcriptional code and disease map for adult retinal cell types. Nat Neurosci. 15, 487–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Lima, S.Q., Hromadka, T., Znamenskiy, P. & Zador, A.M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Houweling, A.R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  92. 92

    Jerome, J., Foehring, R.C., Armstrong, W.E., Spain, W.J. & Heck, D.H. Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing. Front. Syst. Neurosci. 5, 70 (2011).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Blumhagen, F. et al. Neuronal filtering of multiplexed odour representations. Nature 479, 493–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  95. 95

    Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143–8148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Zhu, P., Fajardo, O., Shum, J., Zhang Scharer, Y.P. & Friedrich, R.W. High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device. Nat. Protoc. 7, 1410–1425 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Nikolenko, V., Peterka, D.S. & Yuste, R. A portable laser photostimulation and imaging microscope. J. Neural Eng. 7, 045001 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Reutsky-Gefen, I. et al. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4, 1509 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Zhu, P. et al. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the tet system. Front. Neural Circuits 3, 21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Clark, B. Judkewitz, D. Peterka, A. Roth, T. Sato, S. Smith, D. Sosulski, C. Wilms, K. Yonehara, R. Yuste and F. Zhang for discussions and for comments on the manuscript. We thank B. Judkewitz for help with Figure 4. This work was supported by an EMBO Long-Term Fellowship (A.M.P.) and by grants from the Friedrich Miescher Institute, Alcon, European Research Council and the European Union (B.R.) and from the Wellcome Trust, ERC and Gatsby Charitable Foundation (M.H.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Botond Roska or Michael Häusser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Packer, A., Roska, B. & Häusser, M. Targeting neurons and photons for optogenetics. Nat Neurosci 16, 805–815 (2013). https://doi.org/10.1038/nn.3427

Download citation

Further reading