Abstract
Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Hummel, F. et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499 (2005).
Miniussi, C. et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 1, 326–336 (2008).
Barker, A.T., Jalinous, R. & Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 325, 1106–1107 (1985).
Huerta, P.T. & Volpe, B.T. Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J. Neuroeng. Rehabil. 6, 7 (2009).
Pasley, B.N., Allen, E.A. & Freeman, R.D. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62, 291–303 (2009).
Perini, F., Cattaneo, L., Carrasco, M. & Schwarzbach, J.V. Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect. J. Neurosci. 32, 12361–12365 (2012).
Utz, K.S., Dimova, V., Oppenlander, K. & Kerkhoff, G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology–a review of current data and future implications. Neuropsychologia 48, 2789–2810 (2010).
Nitsche, M.A. & Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. (Lond.) 527, 633–639 (2000).
Nitsche, M.A. et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. (Lond.) 568, 291–303 (2005).
Hallett, M. Transcranial magnetic stimulation: a primer. Neuron 55, 187–199 (2007).
Sandrini, M., Umilta, C. & Rusconi, E. The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci. Biobehav. Rev. 35, 516–536 (2011).
Cohen, L.G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).
Chambers, C.D., Payne, J.M., Stokes, M.G. & Mattingley, J.B. Fast and slow parietal pathways mediate spatial attention. Nat. Neurosci. 7, 217–218 (2004).
Bütefisch, C.M., Khurana, V., Kopylev, L. & Cohen, L.G. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J. Neurophysiol. 91, 2110–2116 (2004).
Reis, J. et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J. Physiol. (Lond.) 586, 325–351 (2008).
Ziemann, U., Rothwell, J.C. & Ridding, M.C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. (Lond.) 496, 873–881 (1996).
Buch, E.R., Mars, R.B., Boorman, E.D. & Rushworth, M.F. A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J. Neurosci. 30, 1395–1401 (2010).
Koch, G. et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J. Neurosci. 27, 6815–6822 (2007).
Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R. & Kanazawa, I. Magnetic stimulation over the cerebellum in humans. Ann. Neurol. 37, 703–713 (1995).
Pascual-Leone, A. & Walsh, V. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292, 510–512 (2001).
Silvanto, J., Lavie, N. & Walsh, V. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol. 96, 941–945 (2006).
Chen, R. et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398–1403 (1997).
Censor, N., Dimyan, M.A. & Cohen, L.G. Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Curr. Biol. 20, 1545–1549 (2010).
Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature 415, 640–644 (2002).
Censor, N. & Cohen, L.G. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. J. Physiol. (Lond.) 589, 21–28 (2011).
Pascual-Leone, A., Grafman, J. & Hallett, M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289 (1994).
Kim, Y.H., Park, J.W., Ko, M.H., Jang, S.H. & Lee, P.K. Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci. Lett. 367, 181–185 (2004).
Agostino, R. et al. Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects. Exp. Brain Res. 180, 105–111 (2007).
Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V. & Fehr, E. Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science 314, 829–832 (2006).
Rossi, S. et al. Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation. Nat. Neurosci. 4, 948–952 (2001).
Huang, Y.-Z., Edwards, M.J., Rounis, E., Bhatia, K.P. & Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 45, 201–206 (2005).
Antal, A. et al. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J. Cogn. Neurosci. 16, 521–527 (2004).
Ragert, P., Vandermeeren, Y., Camus, M. & Cohen, L.G. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin. Neurophysiol. 119, 805–811 (2008).
Sparing, R. et al. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132, 3011–3020 (2009).
Fregni, F. et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30 (2005).
Reis, J. et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 106, 1590–1595 (2009).
Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R. & Walsh, V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr. Biol. 20, 2016–2020 (2010).
Bliss, T.V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).
Dudek, S.M. & Bear, M.F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910–2918 (1993).
Di Lazzaro, V. et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J. Physiol. (Lond.) 586, 3871–3879 (2008).
Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R. & Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572–584 (2000).
Wolters, A. et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J. Neurophysiol. 89, 2339–2345 (2003).
Feldman, D.E. The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012).
Buch, E.R., Johnen, V.M., Nelissen, N., O'Shea, J. & Rushworth, M.F. Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J. Neurosci. 31, 17669–17679 (2011).
Rizzo, V. et al. Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism. Cereb. Cortex 19, 907–915 (2009).
Huang, Y.Z., Chen, R.S., Rothwell, J.C. & Wen, H.Y. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol. 118, 1028–1032 (2007).
Stefan, K., Kunesch, E., Benecke, R., Cohen, L.G. & Classen, J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol. (Lond.) 543, 699–708 (2002).
Stagg, C.J. & Nitsche, M.A. Physiological basis of transcranial direct current stimulation. Neuroscientist 17, 37–53 (2011).
Bindman, L.J., Lippold, O.C. & Redfearn, J.W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. (Lond.) 172, 369–382 (1964).
Liebetanz, D., Nitsche, M.A., Tergau, F. & Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247 (2002).
Nitsche, M.A. et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. (Lond.) 553, 293–301 (2003).
Fritsch, B. et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204 (2010).
Antal, A. et al. Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimul. 3, 230–237 (2010).
Cheeran, B. et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. (Lond.) 586, 5717–5725 (2008).
Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).
Woo, N.H. et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci. 8, 1069–1077 (2005).
Nitsche, M.A. et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 19, 2720–2726 (2004).
Stagg, C.J. et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 29, 5202–5206 (2009).
Nitsche, M.A., Müller-Dahlhaus, F., Paulus, W. & Ziemann, U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J. Physiol. (Lond.) 590, 4641–4662 (2012).
Monte-Silva, K. et al. D2 receptor block abolishes theta burst stimulation-induced neuroplasticity in the human motor cortex. Neuropsychopharmacology 36, 2097–2102 (2011).
Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W. & Nitsche, M.A. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J. Physiol. (Lond.) 588, 3415–3424 (2010).
Ridding, M.C. & Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. (Lond.) 588, 2291–2304 (2010).
Plewnia, C. et al. Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism. Cortex doi:10.1016/j.cortex.2012.11.002 (15 November 2012).
Bikson, M., Rahman, A. & Datta, A. Computational models of transcranial direct current stimulation. Clin. EEG Neurosci. 43, 176–183 (2012).
Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).
Salinas, E. & Sejnowski, T.J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).
Thut, G. et al. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 21, 1176–1185 (2011).
Shafi, M.M., Westover, M.B., Fox, M.D. & Pascual-Leone, A. Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur. J. Neurosci. 35, 805–825 (2012).
Bastos, A.M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).
Yuste, R. Origin and classification of neocortical interneurons. Neuron 48, 524–527 (2005).
Ni, Z., Muller-Dahlhaus, F., Chen, R. & Ziemann, U. Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimul. 4, 281–293 (2011).
Civardi, C., Cantello, R., Asselman, P. & Rothwell, J.C. Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14, 1444–1453 (2001).
Bestmann, S. et al. Mapping causal interregional influences with concurrent TMS-fMRI. Exp. Brain Res. 191, 383–402 (2008).
Davare, M., Lemon, R. & Olivier, E. Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J. Physiol. (Lond.) 586, 2735–2742 (2008).
O'Shea, J., Sebastian, C., Boorman, E.D., Johansen-Berg, H. & Rushworth, M.F. Functional specificity of human premotor-motor cortical interactions during action selection. Eur. J. Neurosci. 26, 2085–2095 (2007).
Mars, R.B. et al. Short-latency influence of medial frontal cortex on primary motor cortex during action selection under conflict. J. Neurosci. 29, 6926–6931 (2009).
Hasan, A. et al. Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. J. Cogn. Neurosci. 25, 558–570 (2013).
Koch, G. et al. TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. J. Physiol. (Lond.) 587, 4281–4292 (2009).
Daskalakis, Z.J. et al. Exploring the connectivity between the cerebellum and motor cortex in humans. J. Physiol. (Lond.) 557, 689–700 (2004).
Avenanti, A., Annella, L., Candidi, M., Urgesi, C. & Aglioti, S.M. Compensatory plasticity in the action observation network: virtual lesions of STS enhance anticipatory simulation of seen actions. Cereb. Cortex 23, 570–580 (2013).
Avenanti, A., Bolognini, N., Maravita, A. & Aglioti, S.M. Somatic and motor components of action simulation. Curr. Biol. 17, 2129–2135 (2007).
Paus, T. Inferring causality in brain images: a perturbation approach. Phil. Trans. R. Soc. Lond. B 360, 1109–1114 (2005).
Polanía, R., Nitsche, M.A. & Paulus, W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 32, 1236–1249 (2011).
Chanes, L., Quentin, R., Tallon-Baudry, C. & Valero-Cabre, A. Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. J. Neurosci. 33, 5000–5005 (2013).
Romei, V., Driver, J., Schyns, P.G. & Thut, G. Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr. Biol. 21, 334–337 (2011).
Polanía, R., Nitsche, M.A., Korman, C., Batsikadze, G. & Paulus, W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22, 1314–1318 (2012).
Roth, Y., Amir, A., Levkovitz, Y. & Zangen, A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J. Clin. Neurophysiol. 24, 31–38 (2007).
Rossi, S. et al. A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clin. Neurophysiol. 118, 709–716 (2007).
Kuo, M.F. & Nitsche, M.A. Effects of transcranial electrical stimulation on cognition. Clin. EEG Neurosci. 43, 192–199 (2012).
Moliadze, V., Antal, A. & Paulus, W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J. Physiol. (Lond.) 588, 4891–4904 (2010).
Fertonani, A., Pirulli, C. & Miniussi, C. Random noise stimulation improves neuroplasticity in perceptual learning. J. Neurosci. 31, 15416–15423 (2011).
Groppa, S. et al. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum. Brain Mapp. 33, 419–430 (2012).
Cohen, D. & Cuffin, B.N. Developing a more focal magnetic stimulator. Part I: some basic principles. J. Clin. Neurophysiol. 8, 102–111 (1991).
Deng, Z.D., Lisanby, S.H. & Peterchev, A.V. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 6, 1–13 (2013).
Wagner, T., Rushmore, J., Eden, U. & Valero-Cabre, A. Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45, 1025–1034 (2009).
Nitsche, M.A. et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97, 3109–3117 (2007).
Datta, A. et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207 (2009).
Dugué, L., Marque, P. & VanRullen, R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J. Neurosci. 31, 11889–11893 (2011).
Cattaneo, L., Sandrini, M. & Schwarzbach, J. State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb. Cortex 20, 2252–2258 (2010).
Silvanto, J., Muggleton, N. & Walsh, V. State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454 (2008).
Acknowledgements
We thank S.-L. Liew for suggestions. This work was supported by the Intramural Research Program of the US National Institute of Neurological Disorders and Stroke (NINDS; US National Institutes of Health) and by funding from US Department of Defense in the Center for Neuroscience and Regenerative Medicine to M.S. and E.R.B. N.C. was supported by an NINDS Ruth L. Kirschstein National Research Service Award.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Dayan, E., Censor, N., Buch, E. et al. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 16, 838–844 (2013). https://doi.org/10.1038/nn.3422
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.3422
This article is cited by
-
Reverse effect of home-use binaural beats brain stimulation
Scientific Reports (2023)
-
Effectiveness assessment of repetitive transcranial alternating current stimulation with concurrent EEG and fNIRS measurement
Health Information Science and Systems (2023)
-
Pulsed Electromagnetic Fields Protect Against Brain Ischemia by Modulating the Astrocytic Cholinergic Anti-inflammatory Pathway
Cellular and Molecular Neurobiology (2023)
-
Comparing Transcranial Direct Current Stimulation (tDCS) with Other Non-Invasive Brain Stimulation (NIBS) in the Treatment of Alzheimer’s Disease: A Literature Review
Journal of Medical and Biological Engineering (2023)
-
The therapeutic role of repetitive transcranial magnetic stimulation in children with attention deficit/hyperactivity disorder in Egypt a randomized sham controlled clinical trial
Middle East Current Psychiatry (2022)