BMP signaling specifies the development of a large and fast CNS synapse


Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, the mechanisms that determine synapse size in CNS circuits are largely unknown. Here we use the calyx of Held synapse, a major relay in the auditory system, to identify and study signaling pathways that specify large nerve terminal size and fast synaptic transmission. Using genome-wide screening, we identified bone morphogenetic proteins (BMPs) as candidate signaling molecules in the area of calyx synapses. Conditional deletion of BMP receptors in the auditory system of mice led to aberrations of synapse morphology and function specifically at the calyx of Held, with impaired nerve terminal growth, loss of monoinnervation and less mature transmitter release properties. Thus, BMP signaling specifies large and fast-transmitting synapses in the auditory system in a process that shares homologies with, but also extends beyond, retrograde BMP signaling at Drosophila neuromuscular synapses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Expression of BMP ligands and receptors in the CNS auditory circuits as revealed by genome-wide expression screening and ISH.
Figure 2: Conditional genetic deletion of BMP receptors leads to smaller nerve terminal size and presynaptic deficits of synaptic transmission at the calyx of Held.
Figure 3: Electron microscopy confirms smaller calyx size and reveals a vesicle docking deficit in BMPR1a/1b cDKO mice.
Figure 4: BMP receptor signaling is crucial for calyx growth and competing synapse elimination.
Figure 5: Ultrastructural reconstructions by SBF-SEM directly show deficits in calyx growth and synapse elimination.
Figure 6: BMP receptor signaling ensures temporally precise and reliable postsynaptic action potential firing at an excitatory relay synapse.
Figure 7: IHC evidence for pSMAD signaling in presynaptic and postsynaptic neurons.
Figure 8: BMP receptor signaling has no major role in the development of small excitatory synapses in the LSO.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. 1

    Sanes, J.R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Walmsley, B., Alvarez, F.J. & Fyffe, R.E.W. Diversity of structure and function at mammalian central synapses. Trends Neurosci. 21, 81–88 (1998).

    CAS  PubMed  Google Scholar 

  3. 3

    Sherman, S.M. & Guillery, R.W. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc. Natl. Acad. Sci. USA 95, 7121–7126 (1998).

    CAS  PubMed  Google Scholar 

  4. 4

    Borst, J.G. & Soria van Hoeve, J. The calyx of held synapse: from model synapse to auditory relay. Annu. Rev. Physiol. 74, 199–224 (2012).

    CAS  PubMed  Google Scholar 

  5. 5

    Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Bergsman, J.B., De Camilli, P. & McCormick, D.A. Multiple large inputs to principal cells in the mouse medial nucleus of the trapezoid body. J. Neurophysiol. 92, 545–552 (2004).

    PubMed  Google Scholar 

  7. 7

    Rodríguez-Contreras, A., de Lange, R.P.J., Lucassen, P.J. & Borst, J.G.G. Branching of calyceal afferents during postnatal development in the rat auditory brainstem. J. Comp. Neurol. 496, 214–228 (2006).

    PubMed  Google Scholar 

  8. 8

    Cant, N.B. & Benson, C.G. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res. Bull. 60, 457–474 (2003).

    PubMed  Google Scholar 

  9. 9

    Case, D.T., Zhao, X. & Gillespie, D.C. Functional refinement in the projection from ventral cochlear nucleus to lateral superior olive precedes hearing onset in rat. PLoS ONE 6, e20756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Grothe, B., Pecka, M. & McAlpine, D. Mechanisms of sound localization in mammals. Physiol. Rev. 90, 983–1012 (2010).

    CAS  PubMed  Google Scholar 

  11. 11

    Hoffpauir, B.K., Grimes, J.L., Mathers, P.H. & Spirou, G.A. Synaptogenesis of the calyx of Held: rapid onset of function and one-to-one morphological innervation. J. Neurosci. 26, 5511–5523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Rodríguez-Contreras, A., van Hoeve, J.S., Habets, R.L., Locher, H. & Borst, J.G. Dynamic development of the calyx of Held synapse. Proc. Natl. Acad. Sci. USA 105, 5603–5608 (2008).

    PubMed  Google Scholar 

  13. 13

    Hoffpauir, B.K., Kolson, D.R., Mathers, P.H. & Spirou, G.A. Maturation of synaptic partners: functional phenotype and synaptic organization tuned in synchrony. J. Physiol. (Lond.) 588, 4365–4385 (2010).

    CAS  Google Scholar 

  14. 14

    Erazo-Fischer, E., Striessnig, J. & Taschenberger, H. The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse. J. Neurosci. 27, 1725–1737 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Chuhma, N., Koyano, K. & Ohmori, H. Synchronisation of neurotransmitter release during postnatal development in a calyceal presynaptic terminal of rat. J. Physiol. (Lond.) 530, 93–104 (2001).

    CAS  Google Scholar 

  17. 17

    Futai, K., Okada, M., Matsuyama, K. & Takahashi, T. High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. J. Neurosci. 21, 3342–3349 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Koike-Tani, M., Saitoh, N. & Takahashi, T. Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. J. Neurosci. 25, 199–207 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Yang, Y.M. et al. GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse. J. Physiol. (Lond.) 589, 4209–4227 (2011).

    CAS  Google Scholar 

  20. 20

    Toyoshima, M. et al. Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse. Dev. Biol. 336, 192–200 (2009).

    CAS  PubMed  Google Scholar 

  21. 21

    Aberle, H. et al. Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Marqués, G. et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002).

    PubMed  Google Scholar 

  23. 23

    McCabe, B.D. et al. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39, 241–254 (2003).

    CAS  PubMed  Google Scholar 

  24. 24

    Miyazono, K., Kamiya, Y. & Morikawa, M. Bone morphogenetic protein receptors and signal transduction. J. Biochem. 147, 35–51 (2010).

    CAS  PubMed  Google Scholar 

  25. 25

    Rawson, J.M., Lee, M., Kennedy, E.L. & Selleck, S.B. Drosophila neuromuscular synapse assembly and function require the TGF-β type I receptor saxophone and the transcription factor Mad. J. Neurobiol. 55, 134–150 (2003).

    CAS  PubMed  Google Scholar 

  26. 26

    McCabe, B.D. et al. Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41, 891–905 (2004).

    CAS  PubMed  Google Scholar 

  27. 27

    Ball, R.W. et al. Retrograde BMP signaling controls synaptic growth at the NMJ by regulating trio expression in motor neurons. Neuron 66, 536–549 (2010).

    CAS  PubMed  Google Scholar 

  28. 28

    Kalinovsky, A. et al. Development of axon-target specificity of ponto-cerebellar afferents. PLoS Biol. 9, e1001013 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Liem, K.F. Jr., Tremml, G., Roelink, H. & Jessell, T.M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    CAS  PubMed  Google Scholar 

  30. 30

    Zhang, D., Mehler, M.F., Song, Q. & Kessler, J.A. Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J. Neurosci. 18, 3314–3326 (1998).

    CAS  PubMed  Google Scholar 

  31. 31

    Bond, A.M., Bhalala, O.G. & Kessler, J.A. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev. Neurobiol. 72, 1068–1084 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Graham, A., Francis-West, P., Brickell, P. & Lumsden, A. The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684–686 (1994).

    CAS  PubMed  Google Scholar 

  33. 33

    Augsburger, A., Schuchardt, A., Hoskins, S., Dodd, J. & Butler, S. BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24, 127–141 (1999).

    CAS  PubMed  Google Scholar 

  34. 34

    Miyagi, M. et al. Bone morphogenetic protein receptor expressions in the adult rat brain. Neuroscience 176, 93–109 (2011); erratum 183, 278 (2011).

    CAS  PubMed  Google Scholar 

  35. 35

    Carulli, D. et al. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 494, 559–577 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Peterson, R.S. et al. CD44 modulates Smad1 activation in the BMP-7 signaling pathway. J. Cell Biol. 166, 1081–1091 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Mishina, Y., Hanks, M.C., Miura, S., Tallquist, M.D. & Behringer, R.R. Generation of Bmpr/Alk3 conditional knockout mice. Genesis 32, 69–72 (2002).

    CAS  PubMed  Google Scholar 

  38. 38

    Voiculescu, O., Charnay, P. & Schneider-Maunoury, S. Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis 26, 123–126 (2000).

    CAS  PubMed  Google Scholar 

  39. 39

    Han, Y., Kaeser, P.S., Südhof, T.C. & Schneggenburger, R. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304–316 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Yi, S.E., Daluiski, A., Pederson, R., Rosen, V. & Lyons, K.M. The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621–630 (2000).

    CAS  PubMed  Google Scholar 

  41. 41

    Schneggenburger, R., Meyer, A.C. & Neher, E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23, 399–409 (1999).

    CAS  PubMed  Google Scholar 

  42. 42

    Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Kim, G. & Kandler, K. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat. Neurosci. 6, 282–290 (2003).

    CAS  PubMed  Google Scholar 

  44. 44

    Koehl, A. et al. Gene expression profiling of the rat superior olivary complex using serial analysis of gene expression. Eur. J. Neurosci. 20, 3244–3258 (2004).

    PubMed  Google Scholar 

  45. 45

    Friedland, D.R., Popper, P., Eernisse, R. & Cioffi, J.A. Differentially expressed genes in the rat cochlear nucleus. Neuroscience 142, 753–768 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Ji, S.J. & Jaffrey, S.R. Intra-axonal translation of SMAD1/5/8 mediates retrograde regulation of trigeminal ganglia subtype specification. Neuron 74, 95–107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Foletta, V.C. et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J. Cell Biol. 162, 1089–1098 (2003); erratum 163, 421 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Lee-Hoeflich, S.T. et al. Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J. 23, 4792–4801 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Eaton, B.A. & Davis, G.W. LIM Kinase1 controls synaptic stability downstream of the type II BMP receptor. Neuron 47, 695–708 (2005).

    CAS  PubMed  Google Scholar 

  50. 50

    Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011).

    CAS  PubMed  Google Scholar 

  51. 51

    Farago, A.F., Awatramani, R.B. & Dymecki, S.M. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50, 205–218 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Renier, N. et al. Genetic dissection of the function of hindbrain axonal commissures. PLoS Biol. 8, e1000325 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Meyer, A.C., Neher, E. & Schneggenburger, R. Estimation of quantal size and number of functional active zones at the calyx of Held synapse by nonstationary EPSC variance analysis. J. Neurosci. 21, 7889–7900 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Xiao, L. et al. Developmental expression of Synaptotagmin isoforms in single calyx of Held-generating neurons. Mol. Cell Neurosci. 44, 374–385 (2010).

    CAS  PubMed  Google Scholar 

  55. 55

    Knott, G.W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002).

    CAS  PubMed  Google Scholar 

Download references


We thank A. Grapin-Botton, E. Robertson, P. Scheiffele, M. Müller, O. Kochubey and D. Perkel for discussions, R. Behringer (University of Texas) and K. Lyons (University of California Los Angeles) for sharing mice, D. Constam (Ecole Polytechnique Fédérale de Lausanne) for providing ISH probes, H. Murray for expert technical assistance and O. Burri for help with image analysis. The cDNA array analyses were performed in the DNA array facility Lausanne (DAFL); image acquisition was done at the Bio-optical imaging platform of EPFL. The work was supported by the Swiss National Foundation Science (SNF; Sinergia CRSI33_127440/1), the National Center of Competence in Research of the SNF 'Synaptic Bases of Mental Disease', the Deutsche Forschungsgemeinschaft (DFG; PP 1608) (all to R.S.) and a Marie-Curie Fellowship (IEF-235223-CALYX MMFF; to N.M.).

Author information




L.X. and R.S. conceived the study and designed experiments. L.X. performed electrophysiology, qPCR, ISH, IHC, TEM analysis and SBF-SEM reconstructions. N.M., E.K. and E.G. performed DNA array analyses, IHC and electrophysiology, and LSO electrophysiology, respectively. C.G. and G.K. performed SBF-SEM data acquisition and reconstruction. R.S. wrote the paper.

Corresponding author

Correspondence to Ralf Schneggenburger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1888 kb)

Supplementary Video 1

Video of a 3D-reconstructed MNTB neuron and its adjacent calyx synapse in a wild-type P8 mouse. Serial block face scanning EM (SBF-sEM) was used to reconstruct a single postsynaptic MNTB neuron and its adjacent synapses. The postsynaptic neuron is shown in gray; the adjacent excitatory nerve terminals are shown in color code according to their reconstructed volumes (green: 779 μm3; violet: < 10 μm3; see also color scale bar in Figure 5a. (MP4 1269 kb)

Supplementary Video 2

Video of a 3D-reconstructed MNTB neuron and its adjacent nerve terminals in a BMPR1a/1b cDKO mouse at P8. Serial block face scanning EM (SBF-sEM) was used to reconstruct several adjacent MNTB neurons, of which one is shown here. The postsynaptic neuron is shown in gray; the adjacent excitatory nerve terminals are shown in color code according to their reconstructed volumes (see color scale bar in Figure 5a). Note that in the BMPR1a/1b cDKO mice, several nerve terminals of intermediate size innervate a given MNTB neuron, suggesting that BMP signaling is involved in synapse elimination at the calyx of Held. (MP4 1624 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, L., Michalski, N., Kronander, E. et al. BMP signaling specifies the development of a large and fast CNS synapse. Nat Neurosci 16, 856–864 (2013).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing