Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic mechanisms of adaptation and sensitization in the retina

Abstract

Sensory systems continually adjust the way stimuli are processed. What are the circuit mechanisms underlying this plasticity? We investigated how synapses in the retina of zebrafish adjust to changes in the temporal contrast of a visual stimulus by imaging activity in vivo. Following an increase in contrast, bipolar cell synapses with strong initial responses depressed, whereas synapses with weak initial responses facilitated. Depression and facilitation predominated in different strata of the inner retina, where bipolar cell output was anticorrelated with the activity of amacrine cell synapses providing inhibitory feedback. Pharmacological block of GABAergic feedback converted facilitating bipolar cell synapses into depressing ones. These results indicate that depression intrinsic to bipolar cell synapses causes adaptation of the ganglion cell response to contrast, whereas depression in amacrine cell synapses causes sensitization. Distinct microcircuits segregating to different layers of the retina can cause simultaneous increases or decreases in the gain of neural responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depressing and facilitating synaptic responses to temporal contrast.
Figure 2: Variations in contrast adaptation across bipolar cell synapses.
Figure 3: Frequency-dependent plasticity of synaptic transmission from bipolar cells.
Figure 4: Presynaptic calcium signals associated with depression and facilitation.
Figure 5: Stratification of amacrine cells synapses responding to contrast.
Figure 6: Pharmacological manipulation of the inhibitory input to bipolar cells removes facilitation.
Figure 7: Depressing and facilitating responses in neurons postsynaptic to bipolar cells.
Figure 8: Stratification of different groups of bipolar cell terminals in the inner retina.

Similar content being viewed by others

References

  1. Wark, B., Lundstrom, B.N. & Fairhall, A. Sensory adaptation. Curr. Opin. Neurobiol. 17, 423–429 (2007).

    Article  CAS  Google Scholar 

  2. Kohn, A. Visual adaptation: physiology, mechanisms, and functional benefits. J. Neurophysiol. 97, 3155–3164 (2007).

    Article  Google Scholar 

  3. Rieke, F. & Rudd, M.E. The challenges natural images pose for visual adaptation. Neuron 64, 605–616 (2009).

    Article  CAS  Google Scholar 

  4. Smirnakis, S.M., Berry, M.J., Warland, D.K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).

    Article  CAS  Google Scholar 

  5. Wark, B., Fairhall, A. & Rieke, F. Timescales of inference in visual adaptation. Neuron 61, 750–761 (2009).

    Article  CAS  Google Scholar 

  6. Laughlin, S.B. The role of sensory adaptation in the retina. J. Exp. Biol. 146, 39–62 (1989).

    CAS  PubMed  Google Scholar 

  7. Demb, J.B. Functional circuitry of visual adaptation in the retina. J. Physiol. (Lond.) 586, 4377–4384 (2008).

    Article  CAS  Google Scholar 

  8. Kastner, D.B. & Baccus, S.A. Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nat. Neurosci. 14, 1317–1322 (2011).

    Article  CAS  Google Scholar 

  9. Kim, K.J. & Rieke, F. Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J. Neurosci. 21, 287–299 (2001).

    Article  CAS  Google Scholar 

  10. Baccus, S.A. & Meister, M. Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909–919 (2002).

    Article  CAS  Google Scholar 

  11. Zaghloul, K.A., Boahen, K. & Demb, J.B. Contrast adaptation in subthreshold and spiking responses of mammalian Y-type retinal ganglion cells. J. Neurosci. 25, 860–868 (2005).

    Article  CAS  Google Scholar 

  12. Manookin, M.B. & Demb, J.B. Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50, 453–464 (2006).

    Article  CAS  Google Scholar 

  13. Beaudoin, D.L., Borghuis, B.G. & Demb, J.B. Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. J. Neurosci. 27, 2636–2645 (2007).

    Article  CAS  Google Scholar 

  14. Baccus, S.A. Timing and computation in inner retinal circuitry. Annu. Rev. Physiol. 69, 271–290 (2007).

    Article  CAS  Google Scholar 

  15. Gollisch, T. & Meister, M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).

    Article  CAS  Google Scholar 

  16. Odermatt, B., Nikolaev, A. & Lagnado, L. Encoding of luminance and contrast by linear and nonlinear synapses in the retina. Neuron 73, 758–773 (2012).

    Article  CAS  Google Scholar 

  17. Dreosti, E. & Lagnado, L. Optical reporters of synaptic activity in neural circuits. Exp. Physiol. 96, 4–12 (2011).

    Article  Google Scholar 

  18. Dreosti, E., Odermatt, B., Dorostkar, M.M. & Lagnado, L. A genetically encoded reporter of synaptic activity in vivo. Nat. Methods 6, 883–889 (2009).

    Article  CAS  Google Scholar 

  19. Lagnado, L., Gomis, A. & Job, C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967 (1996).

    Article  CAS  Google Scholar 

  20. Ratliff, C.P., Borghuis, B.G., Kao, Y.H., Sterling, P. & Balasubramanian, V. Retina is structured to process an excess of darkness in natural scenes. Proc. Natl. Acad. Sci. USA 107, 17368–17373 (2010).

    Article  CAS  Google Scholar 

  21. Hosoya, T., Baccus, S.A. & Meister, M. Dynamic predictive coding by the retina. Nature 436, 71–77 (2005).

    Article  CAS  Google Scholar 

  22. DeVries, S.H. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847–856 (2000).

    Article  CAS  Google Scholar 

  23. Baden, T., Esposti, F., Nikolaev, A. & Lagnado, L. Spikes in retinal bipolar cells phase-lock to visual stimuli with millisecond precision. Curr. Biol. 21, 1859–1869 (2011).

    Article  CAS  Google Scholar 

  24. Dittman, J.S., Kreitzer, A.C. & Regehr, W.G. Interplay between facilitation, depression and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000).

    Article  CAS  Google Scholar 

  25. Gomis, A., Burrone, J. & Lagnado, L. Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells. J. Neurosci. 19, 6309–6317 (1999).

    Article  CAS  Google Scholar 

  26. Burrone, J. & Lagnado, L. Synaptic depression and the kinetics of exocytosis in retinal bipolar cells. J. Neurosci. 20, 568–578 (2000).

    Article  CAS  Google Scholar 

  27. Singer, J.H. & Diamond, J.S. Vesicle depletion and synaptic depression at a mammalian ribbon synapse. J. Neurophysiol. 95, 3191–3198 (2006).

    Article  CAS  Google Scholar 

  28. Ozuysal, Y. & Baccus, S.A. Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73, 1002–1015 (2012).

    Article  CAS  Google Scholar 

  29. Lukasiewicz, P.D., Maple, B.R. & Werblin, F.S. A novel GABA receptor on bipolar cell terminals in the tiger salamander retina. J. Neurosci. 14, 1202–1212 (1994).

    Article  CAS  Google Scholar 

  30. Jusuf, P.R. & Harris, W.A. Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural Dev. 4, 34 (2009).

    Article  Google Scholar 

  31. Nikolaou, N. et al. Parametric functional maps of visual inputs to the tectum. Neuron 76, 317–324 (2012).

    Article  CAS  Google Scholar 

  32. Emran, F. et al. OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc. Natl. Acad. Sci. USA 104, 19126–19131 (2007).

    Article  CAS  Google Scholar 

  33. Connaughton, V.P., Graham, D. & Nelson, R. Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. J. Comp. Neurol. 477, 371–385 (2004).

    Article  CAS  Google Scholar 

  34. Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

    Article  Google Scholar 

  35. Brown, S.P. & Masland, R.H. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat. Neurosci. 4, 44–51 (2001).

    Article  CAS  Google Scholar 

  36. Kim, K.J. & Rieke, F. Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. J. Neurosci. 23, 1506–1516 (2003).

    Article  CAS  Google Scholar 

  37. Jarsky, T. et al. A synaptic mechanism for retinal adaptation to luminance and contrast. J. Neurosci. 31, 11003–11015 (2011).

    Article  CAS  Google Scholar 

  38. Sagdullaev, B.T., Eggers, E.D., Purgert, R. & Lukasiewicz, P.D. Nonlinear interactions between excitatory and inhibitory retinal synapses control visual output. J. Neurosci. 31, 15102–15112 (2011).

    Article  CAS  Google Scholar 

  39. Heidelberger, R. & Matthews, G. Inhibition of calcium influx and calcium current by gamma-aminobutyric acid in single synaptic terminals. Proc. Natl. Acad. Sci. USA 88, 7135–7139 (1991).

    Article  CAS  Google Scholar 

  40. Oesch, N.W. & Diamond, J.S. Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells. Nat. Neurosci. 14, 1555–1561 (2011).

    Article  CAS  Google Scholar 

  41. Berglund, K., Midorikawa, M. & Tachibana, M. Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells. J. Neurosci. 22, 4776–4785 (2002).

    Article  CAS  Google Scholar 

  42. Vickers, E., Kim, M.H., Vigh, J. & von Gersdorff, H. Paired-pulse plasticity in the strength and latency of light-evoked lateral inhibition to retinal bipolar cell terminals. J. Neurosci. 32, 11688–11699 (2012).

    Article  CAS  Google Scholar 

  43. Dorostkar, M.M., Dreosti, E., Odermatt, B. & Lagnado, L. Computational processing of optical measurements of neuronal and synaptic activity in networks. J. Neurosci. Methods 188, 141–150 (2010).

    Article  Google Scholar 

  44. Nusslein-Volhard, C. & Dahm, R. Zebrafish (Oxford University Press, Oxford, New York, 2002).

  45. Ren, J.Q., McCarthy, W.R., Zhang, H., Adolph, A.R. & Li, L. Behavioral visual responses of wild-type and hypopigmented zebrafish. Vision Res. 42, 293–299 (2002).

    Article  Google Scholar 

  46. Heidelberger, R., Zhou, Z.Y. & Matthews, G. Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. J. Neurophysiol. 88, 2509–2517 (2002).

    Article  Google Scholar 

  47. Hull, C. & von Gersdorff, H. Fast endocytosis is inhibited by GABA-mediated chloride influx at a presynaptic terminal. Neuron 44, 469–482 (2004).

    Article  CAS  Google Scholar 

  48. Neves, G. & Lagnado, L. The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. J. Physiol. (Lond.) 515, 181–202 (1999).

    Article  CAS  Google Scholar 

  49. Neves, G. & Lagnado, L. Visual processing: the devil is in the details. Curr. Biol. 10, R896–R898 (2000).

    Article  CAS  Google Scholar 

  50. Bai, Q., Wei, X. & Burton, E.A. Expression of a 12-kb promoter element derived from the zebrafish enolase-2 gene in the zebrafish visual system. Neurosci. Lett. 449, 252–257 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Lagnado laboratory for discussion. Support for this work was provided by the Medical Research Council and the Wellcome Trust (Programme grant 083220).

Author information

Authors and Affiliations

Authors

Contributions

A.N., B.O. and L.L. designed the study. A.N., K.-M.L. and B.O. carried out the experiments. A.N., K.-M.L., B.O. and L.L. analyzed measurements. A.N., K.-M.L., B.O. and L.L. wrote the manuscript.

Corresponding author

Correspondence to Leon Lagnado.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 7283 kb)

Supplementary Movie 1

In vivo imaging of synaptic transmission from bipolar cells responding to contrast. This movie is from the experiment analyzed in Figure 1A. The relative change in fluorescence dynamics (ΔF/F0) is shown on a pseudo-color scale for each ROI, where warmer colors represent stronger increases in sypHy fluorescence and colder colors represent falls. Real-time. Scale bar is 20 μm. (MOV 4071 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaev, A., Leung, KM., Odermatt, B. et al. Synaptic mechanisms of adaptation and sensitization in the retina. Nat Neurosci 16, 934–941 (2013). https://doi.org/10.1038/nn.3408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing