A functional and perceptual signature of the second visual area in primates

Abstract

There is no generally accepted account of the function of the second visual cortical area (V2), partly because no simple response properties robustly distinguish V2 neurons from those in primary visual cortex (V1). We constructed synthetic stimuli replicating the higher-order statistical dependencies found in natural texture images and used them to stimulate macaque V1 and V2 neurons. Most V2 cells responded more vigorously to these textures than to control stimuli lacking naturalistic structure; V1 cells did not. Functional magnetic resonance imaging (fMRI) measurements in humans revealed differences between V1 and V2 that paralleled the neuronal measurements. The ability of human observers to detect naturalistic structure in different types of texture was well predicted by the strength of neuronal and fMRI responses in V2 but not in V1. Together, these results reveal a particular functional role for V2 in the representation of natural image structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Analysis and synthesis of naturalistic textures.
Figure 2: Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques.
Figure 3: Receptive field size does not explain differential responses to naturalistic texture stimuli in V2.
Figure 4: fMRI responses to naturalistic textures differentiate V2 from V1 in humans.
Figure 5: Neuronal responses to naturalistic textures in V2 predict perceptual sensitivity.
Figure 6: Crowd-sourced psychophysical estimates of sensitivity for hundreds of texture families.
Figure 7: Using higher-order correlations to predict perceptual sensitivity.

References

  1. 1

    Schiller, P.H. & Malpeli, J.G. The effect of striate cortex cooling on area 18 cells in the monkey. Brain Res. 126, 366–369 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Sincich, L.C. & Horton, J.C. The circuitry of V1 and V2: integration of color, form, and motion. Annu. Rev. Neurosci. 28, 303–326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Peterhans, E. & Heydt, R.V.D. Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps. J. Neurosci. 9, 1749–1763 (1989).

    Article  CAS  Google Scholar 

  4. 4

    Hegdé, J. & Essen, D.C.V. Selectivity for complex shapes in primate visual area V2. J. Neurosci. 20, RC61–RC66 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Hegdé, J. & Essen, D.C.V. A comparative study of shape representation in macaque visual areas v2 and v4. Cereb. Cortex 17, 1100–1116 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Lee, T.S. & Nguyen, M. Dynamics of subjective contour formation in the early visual cortex. Proc. Natl. Acad. Sci. USA 98, 1907–1911 (2001).

    Article  CAS  Google Scholar 

  7. 7

    Mahon, L.E. & Valois, R.L.D. Cartesian and non-Cartesian responses in LGN, V1, and V2 cells. Vis. Neurosci. 18, 973–981 (2001).

    Article  CAS  Google Scholar 

  8. 8

    Ito, M. & Komatsu, H. Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J. Neurosci. 24, 3313–3324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Anzai, A., Peng, X. & Van Essen, D.C. Neurons in monkey visual area V2 encode combinations of orientations. Nat. Neurosci. 10, 1313–1321 (2007).

    Article  CAS  Google Scholar 

  10. 10

    El-Shamayleh, Y. & Movshon, J.A. Neuronal responses to texture-defined form in macaque visual area v2. J. Neurosci. 31, 8543–8555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Zhou, H., Friedman, H.S. & Heydt, R.V.D. Coding of border ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Thomas, O.M., Cumming, B.G. & Parker, A.J. A specialization for relative disparity in V2. Nat. Neurosci. 5, 472–478 (2002).

    Article  CAS  Google Scholar 

  13. 13

    Willmore, B.D., Prenger, R.J. & Gallant, J.L. Neural representation of natural images in visual area V2. J. Neurosci. 30, 2102–2114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Simoncelli, E.P. Statistical models for images: compression, restoration and synthesis. 31st Asilomar Conference on Signals, Systems & Computers 1, 673–678 (IEEE, 1997).

  15. 15

    Schwartz, O. & Simoncelli, E.P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).

    Article  CAS  Google Scholar 

  16. 16

    Karklin, Y. & Lewicki, M.S. Emergence of complex cell properties by learning to generalize in natural scenes. Nature 457, 83–86 (2009).

    Article  CAS  Google Scholar 

  17. 17

    Sigman, M., Cecchi, G.A., Gilbert, C.D. & Magnasco, M.O. On a common circle: natural scenes and Gestalt rules. Proc. Natl. Acad. Sci. USA 98, 1935–1940 (2001).

    Article  CAS  Google Scholar 

  18. 18

    Geisler, W.S., Perry, J.S., Super, B.J. & Gallogly, D.P. Edge co-occurrence in natural images predicts contour grouping performance. Vision Res. 41, 711–724 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Portilla, J. & Simoncelli, E.P. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–70 (2000).

    Article  Google Scholar 

  20. 20

    Freeman, J. & Simoncelli, E.P. Metamers of the ventral stream. Nat. Neurosci. 14, 1195–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Heeger, D.J. & Bergen, J.R. Pyramid-based texture analysis/synthesis. Proceedings of SIGGRAPH 229–238 (ACM, 1995).

  22. 22

    Balas, B. Attentive texture similarity as a categorization task: comparing texture synthesis models. Pattern Recognit. 41, 972–982 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Angelucci, A. et al. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 8633–8646 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Wandell, B.A., Dumoulin, S.O. & Brewer, A.A. Visual field maps in human cortex. Neuron 56, 366–383 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Larsson, J. & Heeger, D.J. Two retinotopic visual areas in human lateral occipital cortex. J. Neurosci. 26, 13128–13142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Hillis, J.M., Ernst, M.O., Banks, M.S. & Landy, M.S. Combining sensory information: mandatory fusion within, but not between, senses. Science 298, 1627–1630 (2002).

    Article  CAS  Google Scholar 

  27. 27

    Paolacci, G., Chandler, J. & Ipeirotis, P. Running experiments on Amazon Mechanical Turk. Judgm. Decis. Mak. 5, 411–419 (2010).

    Google Scholar 

  28. 28

    Grömping, U. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 61, 139–147 (2007).

    Article  Google Scholar 

  29. 29

    Craft, E., Schütze, H., Niebur, E. & von der Heydt, R. A neural model of figure-ground organization. J. Neurophysiol. 97, 4310–4326 (2007).

    Article  Google Scholar 

  30. 30

    Qiu, F.T., Sugihara, T. & Heydt, R.V.D. Figure-ground mechanisms provide structure for selective attention. Nat. Neurosci. 10, 1492–1499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Fang, F., Boyaci, H. & Kersten, D. Border ownership selectivity in human early visual cortex and its modulation by attention. J. Neurosci. 29, 460–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Ress, D., Backus, B.T. & Heeger, D.J. Activity in primary visual cortex predicts performance in a visual detection task. Nat. Neurosci. 3, 940–945 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  Google Scholar 

  35. 35

    Thomson, M.G., Foster, D.H. & Summers, R.J. Human sensitivity to phase perturbations in natural images: a statistical framework. Perception 29, 1057–1069 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Felsen, G., Touryan, J., Han, F. & Dan, Y. Cortical sensitivity to visual features in natural scenes. PLoS Biol. 3, e342 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Felsen, G. & Dan, Y. A natural approach to studying vision. Nat. Neurosci. 8, 1643–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Rust, N.C. & Movshon, J.A. In praise of artifice. Nat. Neurosci. 8, 1647–1650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Heeger, D.J., Boynton, G.M., Demb, J.B., Seidemann, E. & Newsome, W.T. Motion opponency in visual cortex. J. Neurosci. 19, 7162–7174 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    McDermott, J.H. & Simoncelli, E.P. Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis. Neuron 71, 926–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Glickfeld, L.L., Andermann, M.L., Bonin, V. & Reid, R.C. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16, 219–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Heeger, D.J., Simoncelli, E.P. & Movshon, J.A. Computational models of cortical visual processing. Proc. Natl. Acad. Sci. USA 93, 623–627 (1996).

    Article  CAS  Google Scholar 

  44. 44

    Carandini, M. & Heeger, D.J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    Article  CAS  Google Scholar 

  45. 45

    Rust, N.C., Mante, V., Simoncelli, E.P. & Movshon, J.A. How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9, 1421–1431 (2006).

    Article  CAS  Google Scholar 

  46. 46

    Vintch, B., Zaharia, A.Z., Movshon, J.A. & Simoncelli, E.P. Efficient and direct estimation of a neural subunit model for sensory coding. in Advances in Neural Information Processing Systems vol. 25 (eds. Bartlett, P., Pereira, F.C.N., Burges, C.J.C., Bottou, L. & Weinberger, K.Q.), 3113–3121 (2012).

  47. 47

    Adelson, E.H. On seeing stuff: the perception of materials by humans and machines. Proc. SPIE 4299, 1 (2001).

    Article  Google Scholar 

  48. 48

    Cavanaugh, J.R., Bair, W. & Movshon, J.A. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J. Neurophysiol. 88, 2530–2546 (2002).

    Article  Google Scholar 

  49. 49

    Nestares, O. & Heeger, D.J. Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. 43, 705–715 (2000).

    Article  CAS  Google Scholar 

  50. 50

    Smith, A.M. et al. Investigation of low frequency drift in fMRI signal. Neuroimage 9, 526–533 (1999).

    Article  CAS  Google Scholar 

  51. 51

    Ogawa, S., Lee, T.M., Kay, A.R. & Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990).

    Article  CAS  Google Scholar 

  52. 52

    Gardner, J.L., Merriam, E.P., Movshon, J.A. & Heeger, D.J. Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J. Neurosci. 28, 3988–3999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Wichmann, F.A. & Hill, N.J. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001).

    Article  CAS  Google Scholar 

  54. 54

    Dawid, A. & Skene, A. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 28, 20–28 (1979).

    Google Scholar 

Download references

Acknowledgements

We are grateful to G. Boynton for discussions, to M. Landy for comments on the manuscript, to M. Brotzmang for help programming the Mechanical Turk experiments and to members of the Movshon laboratory for help with physiological experiments. This work was supported by US National Institutes of Health grant EY04440, the Howard Hughes Medical Institute, the New York University Center for Brain Imaging and US National Science Foundation Graduate Research Fellowships to J.F. and C.M.Z.

Author information

Affiliations

Authors

Contributions

J.F. and C.M.Z. performed the experiments and analysis. All authors designed the experiments, interpreted the results and wrote the paper.

Corresponding author

Correspondence to Jeremy Freeman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Modeling (PDF 4220 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Freeman, J., Ziemba, C., Heeger, D. et al. A functional and perceptual signature of the second visual area in primates. Nat Neurosci 16, 974–981 (2013). https://doi.org/10.1038/nn.3402

Download citation

Further reading