Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sublinear integration underlies binocular processing in primary visual cortex

Abstract

Although we know much about the capacity of neurons to integrate synaptic inputs in vitro, less is known about synaptic integration in vivo. Here we address this issue by investigating the integration of inputs from the two eyes in mouse primary visual cortex. We find that binocular inputs to layer 2/3 pyramidal neurons are integrated sublinearly in an amplitude-dependent manner. Sublinear integration was greatest when binocular responses were largest, as occurs at the preferred orientation and binocular disparity, and highest contrast. Using voltage-clamp experiments and modeling, we show that sublinear integration occurs postsynaptically. The extent of sublinear integration cannot be accounted for solely by nonlinear integration of excitatory inputs, even when they are activated closely in space and time, but requires balanced recruitment of inhibition. Finally, we show that sublinear binocular integration acts as a divisive form of gain control, linearizing the output of binocular neurons and enhancing orientation selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summation of binocular inputs at the preferred orientation.
Figure 2: Dependence of binocular integration on stimulus orientation and response phase.
Figure 3: Dependence of binocular integration on phase disparity.
Figure 4: Summation of different components of the synaptic response.
Figure 5: Recruitment and summation of excitation and inhibition during binocular integration.
Figure 6: Balanced recruitment of excitation and inhibition explains sublinear integration of binocular synaptic inputs.
Figure 7: Interactions between excitatory synapses alone cannot account for sublinear integration of binocular inputs.
Figure 8: Impact of sublinear binocular integration on action potential output.

Similar content being viewed by others

References

  1. Koch, C., Poggio, T. & Torre, V. Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc. Natl. Acad. Sci. USA 80, 2799–2802 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Schiller, J., Major, G., Koester, H.J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 605–616 (1997).

    Article  CAS  Google Scholar 

  6. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997).

    Article  CAS  Google Scholar 

  7. Williams, S.R. & Stuart, G.J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Polsky, A., Mel, B.W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Magee, J.C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Magee, J.C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Palmer, L.M. et al. The Cellular basis of GABAB-mediated interhemispheric inhibition. Science 335, 989–993 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Xu, N.L. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Lavzin, M., Rapoport, S., Polsky, A., Garion, L. & Schiller, J. Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490, 397–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Cash, S. & Yuste, R. Input summation by cultured pyramidal neurons is linear and position-independent. J. Neurosci. 18, 10–15 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cash, S. & Yuste, R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Priebe, N.J., Mechler, F., Carandini, M. & Ferster, D. The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nat. Neurosci. 7, 1113–1122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, X., Leischner, U., Rochefort, N.L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Varga, Z., Jia, H., Sakmann, B. & Konnerth, A. Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 108, 15420–15425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kleindienst, T., Winnubst, J., Roth-Alpermann, C., Bonhoeffer, T. & Lohmann, C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron 72, 1012–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi, N. et al. Locally synchronized synaptic inputs. Science 335, 353–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Ohzawa, I. & Freeman, R.D. The binocular organization of complex cells in the cat's visual cortex. J. Neurophysiol. 56, 243–259 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Ohzawa, I. & Freeman, R.D. The binocular organization of simple cells in the cat's visual cortex. J. Neurophysiol. 56, 221–242 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Jagadeesh, B., Wheat, H.S., Kontsevich, L.L., Tyler, C.W. & Ferster, D. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J. Neurophysiol. 78, 2772–2789 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, B.S., Sarnaik, R. & Cang, J. Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 65, 246–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carandini, M. & Ferster, D. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20, 470–484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tan, A.Y., Brown, B.D., Scholl, B., Mohanty, D. & Priebe, N.J. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex. J. Neurosci. 31, 12339–12350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atallah, B.V., Bruns, W., Carandini, M. & Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borg-Graham, L.J., Monier, C. & Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Cruikshank, S.J., Lewis, T.J. & Connors, B.W. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat. Neurosci. 10, 462–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Medini, P. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex. J. Neurosci. 31, 17134–17148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Restani, L. et al. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity. Neuron 64, 707–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Williams, S.R. & Mitchell, S.J. Direct measurement of somatic voltage clamp errors in central neurons. Nat. Neurosci. 11, 790–798 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Branco, T. & Häusser, M. Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69, 885–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krueppel, R., Remy, S. & Beck, H. Dendritic integration in hippocampal dentate granule cells. Neuron 71, 512–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Enoki, R., Namiki, M., Kudo, Y. & Miyakawa, H. Optical monitoring of synaptic summation along the dendrites of CA1 pyramidal neurons. Neuroscience 113, 1003–1014 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Jaubert-Miazza, L. et al. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis. Neurosci. 22, 661–676 (2005).

    Article  PubMed  Google Scholar 

  41. Muir-Robinson, G., Hwang, B.J. & Feller, M.B. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 22, 5259–5264 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ziburkus, J. & Guido, W. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J. Neurophysiol. 96, 2775–2784 (2006).

    Article  PubMed  Google Scholar 

  43. Jia, H., Rochefort, N.L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haider, B. & McCormick, D.A. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62, 171–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeAngelis, G.C., Ohzawa, I. & Freeman, R.D. Depth is encoded in the visual cortex by a specialized receptive field structure. Nature 352, 156–159 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Anzai, A., Ohzawa, I. & Freeman, R.D. Neural mechanisms for encoding binocular disparity: receptive field position versus phase. J. Neurophysiol. 82, 874–890 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Ohzawa, I., DeAngelis, G.C. & Freeman, R.D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Wilson, N.R., Runyan, C.A., Wang, F.L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, S.H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kole, M.H., Brauer, A.U. & Stuart, G.J. Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. J. Physiol. (Lond.) 578, 507–525 (2007).

    Article  CAS  Google Scholar 

  53. Skottun, B.C. et al. Classifying simple and complex cells on the basis of response modulation. Vision Res. 31, 1079–1086 (1991).

    CAS  PubMed  Google Scholar 

  54. Ringach, D.L., Shapley, R.M. & Hawken, M.J. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silver, R.A., Lubke, J., Sakmann, B. & Feldmeyer, D. High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Solomon for discussions. We would also like to thank T. Bock for help with Matlab programming. This work was supported by the Swiss National Science Foundation, the Australian National Health and Medical Research Council and the John Curtin School of Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

G.J.S. and F.L. conceived the project. F.L. conducted the experiments and performed all analysis. K.I. contributed to early experiments. M.-S.T. performed all simulations. All authors discussed the data and contributed to writing the manuscript.

Corresponding authors

Correspondence to Fabio Longordo or Greg J Stuart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longordo, F., To, MS., Ikeda, K. et al. Sublinear integration underlies binocular processing in primary visual cortex. Nat Neurosci 16, 714–723 (2013). https://doi.org/10.1038/nn.3394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing