Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change

Abstract

Accumulated genetic evidence suggests that attenuation of the ratio between cerebral amyloid-β Aβ40 and Aβ42 isoforms is central to familial Alzheimer's disease (FAD) pathogenesis. However, FAD mutations account for only 1–2% of Alzheimer's disease cases, leaving the experience-dependent mechanisms regulating Aβ40/42 an enigma. Here we explored regulation of Aβ40/42 ratio by temporal spiking patterns in the rodent hippocampus. Spike bursts boosted Aβ40/42 through a conformational change in presenilin1 (PS1), the catalytic subunit of γ-secretase, and subsequent increase in Aβ40 production. Conversely, single spikes did not alter basal PS1 conformation and Aβ40/42. Burst-induced PS1 conformational shift was mediated by means of Ca2+-dependent synaptic vesicle exocytosis. Presynaptic inhibition in vitro and visual deprivation in vivo augmented synaptic and Aβ40/42 facilitation by bursts in the hippocampus. Thus, burst probability and transfer properties of synapses represent fundamental features regulating Aβ40/42 by experience and may contribute to the initiation of the common, sporadic Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential regulation of Aβ40 and Aβ42 isoforms by temporal pattern of afferent input in acute hippocampal slices.
Figure 2: Dependency of Aβ40 and Aβ42 isoforms on postsynaptic activation.
Figure 3: Spike bursts induce PS1 conformational changes in hippocampal neurons.
Figure 4: Dependency of PS1 conformation and Aβ40/42 on synaptic vesicle recycling.
Figure 5: Ca2+ dependency of PS1 conformational changes and Aβ40/42 augmentation induced by bursts.
Figure 6: Synaptic facilitation bidirectionally regulates Aβ40/42 augmentation by bursts in hippocampal slices.
Figure 7: Dark rearing enhances synaptic and Aβ40 facilitation by bursts in CA3–CA1 hippocampal connections.
Figure 8: Correlation between short-term plasticity in CA3–CA1 synaptic connections and dynamics of Aβ isoforms per individual animal across different experimental conditions.

Similar content being viewed by others

References

  1. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    CAS  PubMed  Google Scholar 

  2. Palop, J.J. & Mucke, L. Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    CAS  PubMed  Google Scholar 

  4. Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359, 325–327 (1992).

    CAS  PubMed  Google Scholar 

  5. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    CAS  PubMed  Google Scholar 

  6. De Strooper, B. & Annaert, W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. 113, 1857–1870 (2000).

    CAS  PubMed  Google Scholar 

  7. Haass, C. Take five—BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J. 23, 483–488 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jarrett, J.T., Berger, E.P. & Lansbury, P.T. Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    CAS  PubMed  Google Scholar 

  9. Hasegawa, K., Yamaguchi, I., Omata, S., Gejyo, F. & Naiki, H. Interaction between Aβ(1–42) and Aβ(1–40) in Alzheimer's β-amyloid fibril formation in vitro. Biochemistry 38, 15514–15521 (1999).

    CAS  PubMed  Google Scholar 

  10. Kuperstein, I. et al. Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 29, 3408–3420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanzi, R.E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    CAS  PubMed  Google Scholar 

  12. De Strooper, B. Loss-of-function presenilin mutations in Alzheimer disease. EMBO Rep. 8, 141–146 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolfe, M.S. When loss is gain: reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. EMBO Rep. 8, 136–140 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bertram, L., Lill, C.M. & Tanzi, R.E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270–281 (2010).

    CAS  PubMed  Google Scholar 

  15. Suzuki, N. et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264, 1336–1340 (1994).

    CAS  PubMed  Google Scholar 

  16. Duff, K. et al. Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713 (1996).

    CAS  PubMed  Google Scholar 

  17. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864–870 (1996).

    CAS  PubMed  Google Scholar 

  18. Bentahir, M. et al. Presenilin clinical mutations can affect γ-secretase activity by different mechanisms. J. Neurochem. 96, 732–742 (2006).

    CAS  PubMed  Google Scholar 

  19. De Strooper, B. & Annaert, W. Novel research horizons for presenilins and γ-secretases in cell biology and disease. Annu. Rev. Cell Dev. Biol. 26, 235–260 (2010).

    CAS  PubMed  Google Scholar 

  20. Brouwers, N., Sleegers, K. & Van Broeckhoven, C. Molecular genetics of Alzheimer's disease: an update. Ann. Med. 40, 562–583 (2008).

    CAS  PubMed  Google Scholar 

  21. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  22. Cirrito, J.R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    CAS  PubMed  Google Scholar 

  23. Cirrito, J.R. et al. Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo. Neuron 58, 42–51 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Buxbaum, J.D. et al. Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J. Neurosci. 18, 9629–9637 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lisman, J.E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).

    CAS  PubMed  Google Scholar 

  26. Abramov, E. et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci. 12, 1567–1576 (2009).

    CAS  PubMed  Google Scholar 

  27. Wei, W. et al. Amyloid β from axons and dendrites reduces local spine number and plasticity. Nat. Neurosci. 13, 190–196 (2010).

    CAS  PubMed  Google Scholar 

  28. Uemura, K. et al. Allosteric modulation of PS1/γ-secretase conformation correlates with amyloid β42/40 ratio. PLoS ONE 4, e7893 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Berezovska, O. et al. Familial Alzheimer's disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J. Neurosci. 25, 3009–3017 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolfe, M.S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 (1999).

    CAS  PubMed  Google Scholar 

  31. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA 99, 9037–9042 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Murthy, V.N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728 (2003).

    CAS  PubMed  Google Scholar 

  33. Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 103, 17955–17960 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    CAS  PubMed  Google Scholar 

  35. Debanne, D., Guerineau, N.C., Gahwiler, B.H. & Thompson, S.M. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J. Physiol. (Lond.) 491, 163–176 (1996).

    CAS  Google Scholar 

  36. Jankowsky, J.L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    CAS  PubMed  Google Scholar 

  37. Hubel, D.H. & Wiesel, T.N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).

    CAS  PubMed  Google Scholar 

  38. Witter, M.P. et al. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 10, 398–410 (2000).

    CAS  PubMed  Google Scholar 

  39. Philpot, B.D., Sekhar, A.K., Shouval, H.Z. & Bear, M.F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    CAS  PubMed  Google Scholar 

  40. de Kock, C.P.J. & Sakmann, B. High frequency action potential bursts (<100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex. J. Physiol. (Lond.) 586, 3353–3364 (2008).

    CAS  Google Scholar 

  41. Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

    CAS  PubMed  Google Scholar 

  42. Xu, W. et al. Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission. Neuron 73, 990–1001 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. De Strooper, B., Iwatsubo, T. & Wolfe, M.S. Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006304 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Lleó, A. et al. Nonsteroidal anti-inflammatory drugs lower Aβ42 and change presenilin 1 conformation. Nat. Med. 10, 1065–1066 (2004).

    PubMed  Google Scholar 

  45. Rosenzweig, E.S. & Barnes, C.A. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog. Neurobiol. 69, 143–179 (2003).

    CAS  PubMed  Google Scholar 

  46. Deupree, D.L., Bradley, J. & Turner, D.A. Age-related alterations in potentiation in the CA1 region in F344 rats. Neurobiol. Aging 14, 249–258 (1993).

    CAS  PubMed  Google Scholar 

  47. Katzman, R. Education and the prevalence of dementia and Alzheimer's disease. Neurology 43, 13–20 (1993).

    CAS  PubMed  Google Scholar 

  48. Stern, Y. et al. Influence of education and occupation on the incidence of Alzheimer's disease. J. Am. Med. Assoc. 271, 1004–1010 (1994).

    CAS  Google Scholar 

  49. Lazarov, O. et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120, 701–713 (2005).

    CAS  PubMed  Google Scholar 

  50. Herring, A. et al. Preventive and therapeutic types of environmental enrichment counteract beta amyloid pathology by different molecular mechanisms. Neurobiol. Dis. 42, 530–538 (2011).

    CAS  PubMed  Google Scholar 

  51. Zheng, H. et al. β-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525–531 (1995).

    CAS  PubMed  Google Scholar 

  52. Laviv, T. et al. Basal GABA regulates GABABR conformation and release probability at single hippocampal synapses. Neuron 67, 253–267 (2010).

    CAS  PubMed  Google Scholar 

  53. Laviv, T. et al. Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses. J. Neurosci. 31, 12523–12532 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. De Strooper for discussions, O. Berezovska (Harvard Medical School) for providing GFP-PS1-RFP cDNA, S. Frere for comments on the manuscript, Y. Amitai for suggestions on an early version of the manuscript and all laboratory members for discussions. This work was supported by European Research Council (281403), Legacy Heritage Biomedical Program of the Israel Science Foundation (1925/08), Alzheimer's Association (NIRG-10-172308) and Israel Science Foundation (993/08 and 170/08) grants to I.S. and EUROSPIN and SynSys Consortia (FP7-HEALTH-F2-2009-241498 and FP7-HEALTH-F2-2009-242167) grants to N.B. I.D. is grateful to the Center for Nanoscience and Nanotechnology of Tel Aviv University and Azrieli Foundation for the award of doctoral fellowships.

Author information

Authors and Affiliations

Authors

Contributions

I.D. designed, performed, analyzed and interpreted biochemical and electrophysiological experiments. H.F. designed, performed, analyzed and interpreted FRET and FM experiments. H.M. and N.G. performed and analyzed whole-cell voltage-clamp recordings. Y.B. helped to conduct western blot experiments. N.L. and N.B. provided Munc13-1/2 double knockout mice and assisted with the interpretation of results. I.S. designed the study, interpreted the results and supervised the project. I.S., I.D. and H.F. wrote the manuscript.

Corresponding author

Correspondence to Inna Slutsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 392 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolev, I., Fogel, H., Milshtein, H. et al. Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nat Neurosci 16, 587–595 (2013). https://doi.org/10.1038/nn.3376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing