Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses

This article has been updated

Abstract

Stressful experience initiates a neuroendocrine response culminating in the release of glucocorticoid hormones into the blood. Glucocorticoids feed back to the brain, causing adaptations that prevent excessive hormone responses to subsequent challenges. How these changes occur remains unknown. We found that glucocorticoid receptor activation in rodent hypothalamic neuroendocrine neurons following in vivo stress is a metaplastic signal that allows GABA synapses to undergo activity-dependent long-term depression (LTDGABA). LTDGABA was unmasked through glucocorticoid receptor–dependent inhibition of Regulator of G protein Signaling 4 (RGS4), which amplified signaling through postsynaptic metabotropic glutamate receptors. This drove somatodendritic opioid release, resulting in a persistent retrograde suppression of synaptic transmission through presynaptic μ receptors. Together, our data provide new evidence for retrograde opioid signaling at synapses in neuroendocrine circuits and represent a potential mechanism underlying glucocorticoid contributions to stress adaptation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stress unmasks long–term plasticity of GABA synapses.
Figure 2: Glucocorticoid receptor activation is necessary and sufficient to unmask LTDGABA.
Figure 3: LTDGABA is expressed presynaptically.
Figure 4: LTDGABA induction is heterosynaptic and requires a retrograde signal.
Figure 5: Glucocorticoid receptor activation modifies mGluR signaling via RGS4.
Figure 6: Presynaptic μ opioid receptors mediate LTDGABA.
Figure 7: LTDGABA is reversible by opioid receptor antagonism.
Figure 8: LTDGABA is not synapse specific.

Change history

  • 14 April 2013

    In the version of this article initially published online, the black trace was missing from Figure 8b, top right pair. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. de Kloet, E.R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  Google Scholar 

  2. Joëls, M. & Baram, T.Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459–466 (2009).

    Article  Google Scholar 

  3. Keller-Wood, M.E. & Dallman, M.F. Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 5, 1–24 (1984).

    Article  CAS  Google Scholar 

  4. Miklós, I.H. & Kovács, K.J. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113, 581–592 (2002).

    Article  Google Scholar 

  5. Hewitt, S.A., Wamsteeker, J.I., Kurz, E.U. & Bains, J.S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12, 438–443 (2009).

    Article  CAS  Google Scholar 

  6. Verkuyl, J.M., Karst, H. & Joëls, M. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur. J. Neurosci. 21, 113–121 (2005).

    Article  Google Scholar 

  7. Wamsteeker, J.I., Kuzmiski, J.B. & Bains, J.S. Repeated stress impairs endocannabinoid signaling in the paraventricular nucleus of the hypothalamus. J. Neurosci. 30, 11188–11196 (2010).

    Article  CAS  Google Scholar 

  8. Sarkar, J., Wakefield, S., MacKenzie, G., Moss, S.J. & Maguire, J. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J. Neurosci. 31, 18198–18210 (2011).

    Article  CAS  Google Scholar 

  9. Watts, A.G. Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: a complexity beyond negative feedback. Front. Neuroendocrinol. 26, 109–130 (2005).

    Article  CAS  Google Scholar 

  10. Bilkei-Gorzo, A. et al. Control of hormonal stress reactivity by the endogenous opioid system. Psychoneuroendocrinology 33, 425–436 (2008).

    Article  CAS  Google Scholar 

  11. Iremonger, K.J. & Bains, J.S. Retrograde opioid signaling regulates glutamatergic transmission in the hypothalamus. J. Neurosci. 29, 7349–7358 (2009).

    Article  CAS  Google Scholar 

  12. Wagner, J.J., Terman, G.W. & Chavkin, C. Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363, 451–454 (1993).

    Article  CAS  Google Scholar 

  13. Droste, S.K. et al. Corticosterone levels in the brain show a distinct ultradian rhythm, but a delayed response to forced swim stress. Endocrinology 149, 3244–3253 (2008).

    Article  CAS  Google Scholar 

  14. Ronesi, J. & Lovinger, D.M. Induction of striatal long-term synaptic depression by moderate frequency activation of cortical afferents in rat. J. Physiol. (Lond.) 562, 245–256 (2005).

    Article  CAS  Google Scholar 

  15. Puente, N. et al. Polymodal activation of the endocannabinoid system in the extended amygdala. Nat. Neurosci. 14, 1542–1547 (2011).

    Article  CAS  Google Scholar 

  16. Inoue, W. et al. Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nat. Neurosci. advance online publication, doi:10.1038/nn.3373 (7 April 2013).

  17. Castillo, P.E., Chiu, C.Q. & Carroll, R.C. Long-term plasticity at inhibitory synapses. Curr. Opin. Neurobiol. 21, 328–338 (2011).

    Article  CAS  Google Scholar 

  18. Regehr, W.G., Carey, M.R. & Best, A.R. Activity-dependent regulation of synapses by retrograde messengers. Neuron 63, 154–170 (2009).

    Article  CAS  Google Scholar 

  19. Chevaleyre, V. & Castillo, P.E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472 (2003).

    Article  CAS  Google Scholar 

  20. Kuzmiski, J.B., Marty, V., Baimoukhametova, D.V. & Bains, J.S. Stress-induced priming of glutamate synapses unmasks associative short-term plasticity. Nat. Neurosci. 13, 1257–1264 (2010).

    Article  CAS  Google Scholar 

  21. Saugstad, J.A., Marino, M.J., Folk, J.A., Hepler, J.R. & Conn, P.J. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J. Neurosci. 18, 905–913 (1998).

    Article  CAS  Google Scholar 

  22. Ni, Y.G. et al. Region-specific regulation of RGS4 (regulator of G protein–signaling protein type 4) in brain by stress and glucocorticoids: in vivo and in vitro studies. J. Neurosci. 19, 3674–3680 (1999).

    Article  CAS  Google Scholar 

  23. Kim, G. et al. Acute stress responsive RGS proteins in the mouse brain. Mol. Cells 30, 161–165 (2010).

    Article  CAS  Google Scholar 

  24. Ludwig, M. & Pittman, Q.J. Talking back: dendritic neurotransmitter release. Trends Neurosci. 26, 255–261 (2003).

    Article  CAS  Google Scholar 

  25. Iremonger, K.J., Kuzmiski, J.B., Baimoukhametova, D.V. & Bains, J.S. Dual regulation of anterograde and retrograde transmission by endocannabinoids. J. Neurosci. 31, 12011–12020 (2011).

    Article  CAS  Google Scholar 

  26. Ceccatelli, S., Eriksson, M. & Hokfelt, T. Distribution and coexistence of corticotropin-releasing factor-like, neurotensin-like, enkephalin-like, cholecystokinin-like, galanin-like and vasoactive intestinal polypeptide peptided histidine isoleucine-like peptides in the parvocellular part of the paraventricular nucleus. Neuroendocrinology 49, 309–323 (1989).

    Article  CAS  Google Scholar 

  27. Pretel, S. & Piekut, D. Coexistence of corticotropin-releasing factor and enkephalin in the paraventricular nucleus of the rat. J. Comp. Neurol. 294, 192–201 (1990).

    Article  CAS  Google Scholar 

  28. Contet, C. et al. Dissociation of analgesic and hormonal responses to forced swim stress using opioid receptor knockout mice. Neuropsychopharmacology 31, 1733–1744 (2006).

    Article  CAS  Google Scholar 

  29. Nicoll, R.A., Alger, B.E. & Jahr, C.E. Enkephalin blocks inhibitory pathways in the vertebrate CNS. Nature 287, 22–25 (1980).

    Article  CAS  Google Scholar 

  30. Zieglgänsberger, W., French, E., Siggins, G. & Bloom, F. Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 205, 415–417 (1979).

    Article  Google Scholar 

  31. Williams, J.T., Christie, M.J. & Manzoni, O. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343 (2001).

    Article  CAS  Google Scholar 

  32. Decavel, C. & Van den Pol, A.M. Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J. Comp. Neurol. 316, 104–116 (1992).

    Article  CAS  Google Scholar 

  33. Chaouloff, F., Hémar, A. & Manzoni, O. Acute stress facilitates hippocampal CA1 metabotropic glutamate receptor–dependent long-term depression. J. Neurosci. 27, 7130–7135 (2007).

    Article  CAS  Google Scholar 

  34. Nakamura, T., Barbara, J.-G., Nakamura, K. & Ross, W.N. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24, 727–737 (1999).

    Article  CAS  Google Scholar 

  35. Billups, D., Billups, B., Challiss, R.A.J. & Nahorski, S.R. Modulation of Gq protein–coupled inositol trisphosphate and Ca2+ signaling by the membrane potential. J. Neurosci. 26, 9983–9995 (2006).

    Article  CAS  Google Scholar 

  36. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  Google Scholar 

  37. Ludwig, M. et al. Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418, 85–89 (2002).

    Article  CAS  Google Scholar 

  38. Simmons, M.L., Terman, G.W., Gibbs, S.M. & Chavkin, C. L-type calcium channels mediate dynorphin neuropeptide release from dendrites, but not axons of hippocampal granule cells. Neuron 14, 1265–1272 (1995).

    Article  CAS  Google Scholar 

  39. Buckingham, J.C. Secretion of corticotrophin and its hypothalamic releasing factor in response to morphine and opioid peptides. Neuroendocrinology 35, 111–116 (1982).

    Article  CAS  Google Scholar 

  40. Kiritsy-Roy, J.A., Appel, N.M., Bobbitt, F.G. & Van Loon, G.R. Effects of mu-opioid receptor stimulation in the hypothalamic paraventricular nucleus on basal and stress-induced catecholamine secretion and cardiovascular responses. J. Pharmacol. Exp. Ther. 239, 814–822 (1986).

    CAS  PubMed  Google Scholar 

  41. Nugent, F.S., Penick, E.C. & Kauer, J.A. Opioids block long-term potentiation of inhibitory synapses. Nature 446, 1086–1090 (2007).

    Article  CAS  Google Scholar 

  42. Cohen, G.A., Doze, V.A. & Madison, D.V. Opioid inhibition of GABA release from presynaptic terminals of rat hippocampal interneurons. Neuron 9, 325–335 (1992).

    Article  CAS  Google Scholar 

  43. Lafourcade, C.A. & Alger, B.E. Distinctions among GABA(A) and GABA(B) responses revealed by calcium channel antagonists, cannabinoids, opioids and synaptic plasticity in rat hippocampus. Psychopharmacology (Berl.) 198, 539–549 (2008).

    Article  CAS  Google Scholar 

  44. Yang, Y., Atasoy, D., Su, H.H. & Sternson, S.M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011).

    Article  CAS  Google Scholar 

  45. Larsen, P.J. & Mau, S.E. Effect of acute stress on the expression of hypothalamic messenger ribonucleic acids encoding the endogenous opioid precursors preproenkephalin A and proopiomelanocortin. Peptides 15, 783–790 (1994).

    Article  CAS  Google Scholar 

  46. García-García, L., Harbuz, M.S., Manzanares, J., Lightman, S.L. & Fuentes, J.A. RU-486 blocks stress-induced enhancement of proenkephalin gene expression in the paraventricular nucleus of rat hypothalamus. Brain Res. 786, 215–218 (1998).

    Article  Google Scholar 

  47. Lightman, S.L. & Young, W.S. Influence of steroids on the hypothalamic corticotropin-releasing factor and preproenkephalin mRNA responses to stress. Proc. Natl. Acad. Sci. USA 86, 4306–4310 (1989).

    Article  CAS  Google Scholar 

  48. Dumont, E.C., Kinkead, R., Trottier, J.F., Gosselin, I. & Drolet, G. Effect of chronic psychogenic stress exposure on enkephalin neuronal activity and expression in the rat hypothalamic paraventricular nucleus. J. Neurochem. 75, 2200–2211 (2000).

    Article  CAS  Google Scholar 

  49. Sumislawski, J.J., Ramikie, T.S. & Patel, S. Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. Neuropsychopharmacology 36, 2750–2761 (2011).

    Article  CAS  Google Scholar 

  50. Lerner, T.N. & Kreitzer, A.C. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to Parkinsonian motor deficits. Neuron 73, 347–359 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge members of the Bains laboratory for thoughtful discussion and C. Sank and R. Cantrup for technical assistance. We thank Q. Pittman and K. Iremonger for helpful comments on the manuscript, and K. Sharkey (University of Calgary) for providing Cnr1−/− mice. We thank the Hotchkiss Brain Institute support of the optogenetics core. J.S.B. is an Alberta Innovates–Health Solutions Senior Scholar. This work was supported by an operating grant from the Canadian Institutes of Health Research (MOP 86501 to J.S.B.). W.I. and T.F. are supported by postdoctoral fellowships, and J.I.W.C. by a PhD scholarship from Alberta Innovates–Health Solutions. W.I. and J.I.W.C. also received fellowship and scholarship support from the Hotchkiss Brain Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.I.W.C. designed and conducted experiments, analyzed the data, and wrote the manuscript. T.F. and W.I. conducted experiments, analyzed data and contributed to manuscript preparation. J.S.B. designed experiments, prepared the manuscript and supervised the project.

Corresponding author

Correspondence to Jaideep S Bains.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1869 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wamsteeker Cusulin, J., Füzesi, T., Inoue, W. et al. Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nat Neurosci 16, 596–604 (2013). https://doi.org/10.1038/nn.3374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing