Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FIP200 is required for maintenance and differentiation of postnatal neural stem cells

Abstract

Despite recent studies showing that inhibition of autophagy depletes the hematopoietic stem cell pool and increases intracellular reactive oxygen species (ROS), it remains unknown whether autophagy is essential in the maintenance of other stem cells. Moreover, it is unclear whether and how the aberrant ROS increase causes depletion of stem cells. Here we report that ablation of FIP200 (also known as Rb1cc1), a gene essential for autophagy induction in mammalian cells, results in a progressive loss of neural stem cells (NSCs) and impairment in neuronal differentiation specifically in the postnatal brain, but not the embryonic brain, in mice. The defect in maintaining the postnatal NSC pool was caused by p53-dependent apoptotic responses and cell cycle arrest. However, the impaired neuronal differentiation was rescued by treatment with the antioxidant N-acetylcysteine but not by p53 inactivation. These data reveal that FIP200-mediated autophagy contributes to the maintenance and functions of NSCs through regulation of oxidative state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of FIP200 causes autophagy defects, increased numbers of mitochondria and elevated ROS in NSCs.
Figure 2: FIP200 ablation causes degeneration of the SVZ and dentate gyrus as a result of NSC deficiency.
Figure 3: FIP200 deletion reduces the number of self-renewable NSCs.
Figure 4: Inactivation of Trp53 rescues the defects of FIP200-null NSCs in vitro.
Figure 5: Trp53 deletion rescues NSCs defects in FIP200GFAP cKO mice.
Figure 6: FIP200 regulates NSCs differentiation in p53-independent manner.
Figure 7: Rescue of NSCs maintenance in FIP200GFAP cKO mice by scavenging abnormally elevated ROS.
Figure 8: Rescue of NSC neurogenesis defects in FIP200GFAP cKO mice by NAC.

Similar content being viewed by others

References

  1. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  2. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  PubMed  Google Scholar 

  4. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Imayoshi, I. et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 11, 1153–1161 (2008).

    CAS  PubMed  Google Scholar 

  6. Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    CAS  PubMed  Google Scholar 

  7. Ueda, H., Abbi, S., Zheng, C. & Guan, J.L. Suppression of Pyk2 kinase and cellular activities by FIP200. J. Cell Biol. 149, 423–430 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. He, C. & Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    CAS  PubMed  Google Scholar 

  11. Liu, F. et al. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116, 4806–4814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Belle, J.E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gan, B. et al. Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways. J. Cell Biol. 175, 121–133 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizushima, N. Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 36, 2491–2502 (2004).

    CAS  PubMed  Google Scholar 

  17. Quick, K.L. & Dugan, L.L. Superoxide stress identifies neurons at risk in a model of ataxia-telangiectasia. Ann. Neurol. 49, 627–635 (2001).

    CAS  PubMed  Google Scholar 

  18. Wei, H. et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25, 1510–1527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    CAS  PubMed  Google Scholar 

  20. Noble, M., Mayer-Proschel, M. & Proschel, C. Redox regulation of precursor cell function: insights and paradoxes. Antioxid. Redox Signal. 7, 1456–1467 (2005).

    CAS  PubMed  Google Scholar 

  21. Prozorovski, T. et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 10, 385–394 (2008).

    CAS  PubMed  Google Scholar 

  22. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  PubMed  Google Scholar 

  23. Merkle, F.T., Tramontin, A.D., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl. Acad. Sci. USA 101, 17528–17532 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang, C.C., Wang, C., Peng, X., Gan, B. & Guan, J.L. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J. Biol. Chem. 285, 3499–3509 (2010).

    CAS  PubMed  Google Scholar 

  25. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  26. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  PubMed  Google Scholar 

  27. Vazquez, A., Bond, E.E., Levine, A.J. & Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 7, 979–987 (2008).

    CAS  PubMed  Google Scholar 

  28. Assaily, W. et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 44, 491–501 (2011).

    CAS  PubMed  Google Scholar 

  29. Vousden, K.H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    CAS  PubMed  Google Scholar 

  30. Lane, D. & Levine, A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2, a000893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93–102 (2006).

    CAS  PubMed  Google Scholar 

  32. Gross, R.E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    CAS  PubMed  Google Scholar 

  33. Hack, M.A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat. Neurosci. 8, 865–872 (2005).

    CAS  PubMed  Google Scholar 

  34. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315 (2002).

    CAS  PubMed  Google Scholar 

  35. Fukuda, S. et al. Potentiation of astrogliogenesis by STAT3-mediated activation of bone morphogenetic protein-Smad signaling in neural stem cells. Mol. Cell Biol. 27, 4931–4937 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, J. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147, 223–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chuikov, S., Levi, B.P., Smith, M.L. & Morrison, S.J. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat. Cell Biol. 12, 999–1006 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Paik, J.H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Renault, V.M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12, 665–675 (2010).

    CAS  PubMed  Google Scholar 

  41. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    CAS  PubMed  Google Scholar 

  42. Mazumdar, J. et al. O2 regulates stem cells through Wnt/beta-catenin signalling. Nat. Cell Biol. 12, 1007–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Madhavan, L., Ourednik, V. & Ourednik, J. Increased “vigilance” of antioxidant mechanisms in neural stem cells potentiates their capability to resist oxidative stress. Stem Cells 24, 2110–2119 (2006).

    CAS  PubMed  Google Scholar 

  44. Kippin, T.E., Martens, D.J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, D. et al. Puma is required for p53-induced depletion of adult stem cells. Nat. Cell Biol. 12, 993–998 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Meletis, K. et al. p53 suppresses the self-renewal of adult neural stem cells. Development 133, 363–369 (2006).

    CAS  PubMed  Google Scholar 

  47. Gil-Perotin, S. et al. Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J. Neurosci. 26, 1107–1116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y. et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15, 514–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. USA 106, 19860–19865 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei, H., Gan, B., Wu, X. & Guan, J.L. Inactivation of FIP200 leads to inflammatory skin disorder, but not tumorigenesis, in conditional knock-out mouse models. J. Biol. Chem. 284, 6004–6013 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Yuan of Harvard Medical School for Spautin-1. We thank our laboratory colleagues for their discussions, help throughout the project and comments of the manuscript. This research was supported by US National Institutes of Health grant GM052890 to J.-L.G.

Author information

Authors and Affiliations

Authors

Contributions

C.W. conducted the study, analyzed the data and wrote the manuscript; C.-C.L. generated some mouse lines; Z.C.B. genotyped the mice; Y.Z. analyzed the data; J.-L.G. conceived and supervised the study, analyzed the data and co-wrote the manuscript.

Corresponding author

Correspondence to Jun-Lin Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–11 (PDF 14490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Liang, CC., Bian, Z. et al. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16, 532–542 (2013). https://doi.org/10.1038/nn.3365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3365

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing