Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interplay of LRRK2 with chaperone-mediated autophagy

This article has been updated

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. We found LRRK2 to be degraded in lysosomes by chaperone-mediated autophagy (CMA), whereas the most common pathogenic mutant form of LRRK2, G2019S, was poorly degraded by this pathway. In contrast to the behavior of typical CMA substrates, lysosomal binding of both wild-type and several pathogenic mutant LRRK2 proteins was enhanced in the presence of other CMA substrates, which interfered with the organization of the CMA translocation complex, resulting in defective CMA. Cells responded to such LRRK2-mediated CMA compromise by increasing levels of the CMA lysosomal receptor, as seen in neuronal cultures and brains of LRRK2 transgenic mice, induced pluripotent stem cell–derived dopaminergic neurons and brains of Parkinson's disease patients with LRRK2 mutations. This newly described LRRK2 self-perpetuating inhibitory effect on CMA could underlie toxicity in Parkinson's disease by compromising the degradation of α-synuclein, another Parkinson's disease–related protein degraded by this pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LRRK2 is degraded in lysosomes.
Figure 2: LRRK2 behaves as an atypical CMA substrate.
Figure 3: Differences in the degradation of WT and G/S LRRK2.
Figure 4: Overexpression of LRRK2 proteins exerts an inhibitory effect on CMA.
Figure 5: Interplay of LRRK2 with CMA components.
Figure 6: Altered CMA markers in brains of Parkinson's disease patients with the G/S LRRK2 mutation.
Figure 7: Interaction of other LRRK2 mutant variants with CMA.
Figure 8: Coincidence of LRRK2 and α-syn at lysosomes enhances their toxic effect on CMA.

Similar content being viewed by others

Change history

  • 17 March 2013

    In the version of this article initially published online, author Sheng-Han Kuo's name was misspelled. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Spillantini, M.G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. West, A.B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA 102, 16842–16847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    CAS  PubMed  Google Scholar 

  4. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  5. Zhu, J.H., Guo, F., Shelburne, J., Watkins, S. & Chu, C.T. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. 13, 473–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Stefanis, L., Larsen, K., Rideout, H., Sulzer, D. & Greene, L. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinez-Vicente, M. et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Mizushima, N., Levine, B., Cuervo, A. & Klionsky, D. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gómez-Suaga, P. et al. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum. Mol. Genet. 21, 511–525 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Biskup, S. et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann. Neurol. 60, 557–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Alegre-Abarrategui, J. et al. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18, 4022–4034 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ramonet, D. et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS ONE 6, e18568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Plowey, E.D., Cherra, S.J. III, Liu, Y.J. & Chu, C.T. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048–1056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tong, Y. et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA 107, 9879–9884 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Orenstein, S.J. & Cuervo, A.M. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin. Cell Dev. Biol. 21, 719–726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cuervo, A.M. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21, 142–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Chiang, H.L. & Dice, J.F. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J. Biol. Chem. 263, 6797–6805 (1988).

    CAS  PubMed  Google Scholar 

  19. Chiang, H.L., Terlecky, S.R., Plant, C.P. & Dice, J.F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246, 382–385 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Cuervo, A.M. & Dice, J. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Bandyopadhyay, U., Kaushik, S., Vartikovsky, L. & Cuervo, A.M. Dynamic organization of the receptor for chaperone-mediated autophagy at the lysosomal membrane. Mol. Cell Biol. 28, 5747–5763 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cuervo, A.M., Mann, L., Bonten, E., d'Azzo, A. & Dice, J. Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J. 22, 47–59 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaushik, S., Massey, A.C. & Cuervo, A.M. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J. 25, 3921–3933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vogiatzi, T., Xilouri, M., Vekrellis, K. & Stefanis, L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542–23556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kabuta, T., Furuta, A., Aoki, S., Furuta, K. & Wada, K. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J. Biol. Chem. 283, 23731–23738 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alvarez-Erviti, L. et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 67, 1464–1472 (2010).

    Article  PubMed  Google Scholar 

  27. Ko, H.S. et al. CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc. Natl. Acad. Sci. USA 106, 2897–2902 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dice, J.F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Kaushik, S. & Cuervo, A.M. Methods to monitor chaperone-mediated autophagy. Methods Enzymol. 452, 297–324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cuervo, A.M., Terlecky, S.R., Dice, J.F. & Knecht, E. Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J. Biol. Chem. 269, 26374–26380 (1994).

    CAS  PubMed  Google Scholar 

  31. Kett, L.R. et al. LRRK2 Parkinson disease mutations enhance its microtubule association. Hum. Mol. Genet. 21, 890–899 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Tanida, I., Minematsu-Ikeguchi, N., Ueno, T. & Kominami, E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Koga, H., Martinez-Vicente, M., Macian, F., Verkhusha, V.V. & Cuervo, A.M. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat. Commun. 2, 386 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Dodson, M.W., Zhang, T., Jiang, C., Chen, S. & Guo, M. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum. Mol. Genet. 21, 1350–1363 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Mak, S.K., McCormack, A.L., Manning-Bog, A.B., Cuervo, A.M. & Di Monte, D.A. Lysosomal degradation of alpha-synuclein in vivo. J. Biol. Chem. 285, 13621–13629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, C. & Cuervo, A.M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14, 959–965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Massey, A.C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A.M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 103, 5805–5810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blake, R.A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell Biol. 20, 9018–9027 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Greggio, E. et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 16906–16914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greggio, E. et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23, 329–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Sulzer, D. & Surmeier, D.J. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov. Disord. doi:10.1002/mds.25095 (12 July 2012).

  43. Sen, S., Webber, P.J. & West, A.B. Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J. Biol. Chem. 284, 36346–36356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sánchez-Dánes, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Mol. Med. 4, 380–395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kon, M. et al. Chaperone-mediated autophagy is required for tumor growth. Sci. Transl. Med. 3, 109ra117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berger, Z., Smith, K.A. & Lavoie, M.J. Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry 49, 5511–5523 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Cuervo, A.M. & Dice, J.F. Regulation of lamp2a levels in the lysosomal membrane. Traffic 1, 570–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Li, Y. et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12, 826–828 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Staal, R.G.W., Rayport, S. & Sulzer, D. Amperometric detection of dopamine exocytosis from synaptic terminals. in Electrochemical Methods for Neuroscience (eds. Michael, A.C. & Borland, L.M.) Ch. 16 (CRC, Boca Raton, Florida, USA, 2007).

  50. Poulopoulos, M. et al. Clinical and pathological characteristics of LRRK2 G2019S patients with PD. J. Mol. Neurosci. 47, 139–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Storrie, B. & Madden, E. Isolation of subcellular organelles. Methods Enzymol. 182, 203–225 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Rubinsztein, D.C. et al. In search of an “autophagomometer”. Autophagy 5, 585–589 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Lowry, C.C., Kraeft, N.H. & Hughes, F.A. Jr. Blastomycosis of the lung. Am. J. Surg. 81, 676–679 (1951).

    Article  CAS  PubMed  Google Scholar 

  54. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Michael J. Fox Foundation for kindly providing some of the LRRK2 antibodies, C. Calatayud for help with neuronal differentiation of iPSC, D. Arduino and B. Caballero for their help with the generation of the LRRK2 knockdown cells, J.P. Vonsattel and R. Alcalay for assistance with human tissue and A. Diaz and B. Patel for technical assistance in several aspects of this work. This work was supported by grants from the US National Institutes of Health National Institute on Aging (AG031782 and AG038072 (A.M.C.) and AG08702 (Alzheimer's Disease Research Center at Columbia University)), MINECO (SAF2012-33526, PLE2009-0144 and ACI2010-1117 (A.R.); RyC-2008-02772 and BFU2010-21823 (A.C.)), the Beatrice and Roy Backus Foundation (A.M.C.), the Rainwaters Foundation (A.M.C.), a Robert and Renee Belfer gift (A.M.C.), the JPB Foundation (D.S.), the Parkinson's Disease Foundation (D.S. and S.-H.K.), Fondazione Guido Berlucchi (A.C.), a CIBERNED Cooperative Project (A.R.), a US National Institute of Neurological Disorders and Stroke Udall Center of Excellence (A.M.C. and D.S.) and a Hirschl/Weill-Caulier Career Scientist Award (A.M.C.). S.J.O. was supported by US National Institutes of Health National Institute on Aging training grant T32AG023475 and S.-H.K. by an American Academy of Neurology Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.J.O. performed most of the experiments, analyzed data and prepared a draft of the manuscript; S.-H.K. analyzed the human brain samples and conducted some of the experiments on mouse neuronal cultures; I.T. performed some studies in isolated rat liver and mouse, pull-down experiments and some analysis of the kinase inhibitors; E.A. performed studies in neuronal cultures; H.K. assisted with the CMA reporter analysis; I.F.-C., A.C. and A.R. were responsible for all studies with differentiated iPSC; E.C. and L.S.H. provided the brain samples; W.D. provided the LRRK2-expressing cells and advice on some aspects of the project; D.S. critically discussed the results, directed experiments in neuronal culture and human brain and edited and reviewed the final version of the manuscript; A.M.C. directed the study, designed most of the experiments and edited and reviewed the final version of the manuscript.

Corresponding authors

Correspondence to David Sulzer or Ana Maria Cuervo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 5598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orenstein, S., Kuo, SH., Tasset, I. et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16, 394–406 (2013). https://doi.org/10.1038/nn.3350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing