Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Optical control of metabotropic glutamate receptors

Abstract

G protein–coupled receptors (GPCRs), the largest family of membrane signaling proteins, respond to neurotransmitters, hormones and small environmental molecules. The neuronal function of many GPCRs has been difficult to resolve because of an inability to gate them with subtype specificity, spatial precision, speed and reversibility. To address this, we developed an approach for opto-chemical engineering of native GPCRs. We applied this to the metabotropic glutamate receptors (mGluRs) to generate light-agonized and light-antagonized mGluRs (LimGluRs). The light-agonized LimGluR2, on which we focused, was fast, bistable and supported multiple rounds of on/off switching. Light gated two of the primary neuronal functions of mGluR2: suppression of excitability and inhibition of neurotransmitter release. We found that the light-antagonized tool LimGluR2-block was able to manipulate negative feedback of synaptically released glutamate on transmitter release. We generalized the optical control to two additional family members: mGluR3 and mGluR6. This system worked in rodent brain slices and in zebrafish in vivo, where we found that mGluR2 modulated the threshold for escape behavior. These light-gated mGluRs pave the way for determining the roles of mGluRs in synaptic plasticity, memory and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of photoswitches for light-control of mGluR2.
Figure 2: Monte Carlo simulations and cysteine-scanning of mGluR2 LBD.
Figure 3: Photo-antagonism and photo-agonism of mGluR2.
Figure 4: Extension of photoswitching from mGluR2 to mGluR3 and mGluR6.
Figure 5: LimGluR2 hyperpolarizes and reduces excitability in cultured hippocampal neurons.
Figure 6: Optical activation of LimGluR2 reversibly decreases excitatory and inhibitory postsynaptic currents and increases paired pulse facilitation at hippocampal autapses.
Figure 7: LimGluR2-mediated control of neuronal excitability in hippocampal slice.
Figure 8: Agonism of endogenous group II mGluRs and photo-agonism of LimGluR2 increases escape response probability in zebrafish larvae.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Szobota, S. & Isacoff, E.Y. Optical control of neuronal activity. Annu. Rev. Biophys. 39, 329–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Kobilka, B.K. Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol. Sci. 32, 213–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Niswender, C.M. & Conn, P.J. Metabotropic glutamate receptors: physiology, pharmacology and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bockaert, J., Perroy, J., Becamel, C., Marin, P. & Fagni, L. GPCR interacting proteins (GIPs) in the nervous system: roles in physiology and pathologies. Annu. Rev. Pharmacol. Toxicol. 50, 89–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Gainetdinov, R.R., Premont, R.T., Bohn, L.M., Lefkowitz, R.J. & Caron, M.G. Desensitization of G protein–coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Pei, Y., Rogan, S.C., Yan, F. & Roth, B.L. Engineered GPCRs as tools to modulate signal transduction. Physiology (Bethesda) 23, 313–321 (2008).

    CAS  Google Scholar 

  9. Alexander, G.M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein–coupled receptors. Neuron 63, 27–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gutierrez, D.V. et al. Optogenetic control of motor coordination by Gi/o protein–coupled vertebrate rhodopsin in cerebellar Purkinje cells. J. Biol. Chem. 286, 25848–25858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J. & Hankins, M.W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Qiu, X. et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, B., Koizumi, A., Tanaka, N., Panda, S. & Masland, R.H. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. USA 105, 16009–16014 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yamashita, T., Terakita, A. & Shichida, Y. Distinct roles of the second and third cytoplasmic loops of bovine rhodopsin in G protein activation. J. Biol. Chem. 275, 34272–34279 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Yamashita, T., Terakita, A. & Shichida, Y. The second cytoplasmic loop of metabotropic glutamate receptor functions at the third loop position of rhodopsin. J. Biochem. 130, 149–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J.M. et al. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44, 2284–2292 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Oh, E., Maejima, T., Liu, C., Deneris, E. & Herlitze, S. Substitution of 5-HT1A receptor signaling by a light-activated G protein–coupled receptor. J. Biol. Chem. 285, 30825–30836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bailes, H.J., Zhuang, L.Y. & Lucas, R.J. Reproducible and sustained regulation of Galphas signaling using a metazoan opsin as an optogenetic tool. PLoS ONE 7, e30774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fehrentz, T., Schonberger, M. & Trauner, D. Optochemical genetics. Angew. Chem. Int. Edn Engl. 50, 12156–12182 (2011).

    Article  CAS  Google Scholar 

  23. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Anwyl, R. Metabotropic glutamate receptor–dependent long-term potentiation. Neuropharmacology 56, 735–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Lüscher, C. & Huber, K.M. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65, 445–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Panatier, A. et al. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146, 785–798 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Bradley, S.J. & Challiss, R.A. G protein–coupled receptor signaling in astrocytes in health and disease: a focus on metabotropic glutamate receptors. Biochem. Pharmacol. 84, 249–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R. & Nakanishi, S. A family of metabotropic glutamate receptors. Neuron 8, 169–179 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Saugstad, J.A., Segerson, T.P. & Westbrook, G.L. Metabotropic glutamate receptors activate G protein–coupled inwardly rectifying potassium channels in Xenopus oocytes. J. Neurosci. 16, 5979–5985 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikeda, S.R., Lovinger, D.M., McCool, B.A. & Lewis, D.L. Heterologous expression of metabotropic glutamate receptors in adult rat sympathetic neurons: subtype-specific coupling to ion channels. Neuron 14, 1029–1038 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Altinbilek, B. & Manahan-Vaughan, D. A specific role for group II metabotropic glutamate receptors in hippocampal long-term depression and spatial memory. Neuroscience 158, 149–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Marek, G.J. Metabotropic glutamate 2/3 receptors as drug targets. Curr. Opin. Pharmacol. 4, 18–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Muto, T., Tsuchiya, D., Morikawa, K. & Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 104, 3759–3764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsuji, T., Takashima, H., Takeuchi, H., Egawa, T. & Konaka, S. Molecular structure and torsional potential of trans-azobenzene. A gas electron diffraction study. J. Phys. Chem. A 105, 9347–9353 (2001).

    Article  CAS  Google Scholar 

  36. Chang, G., Guida, W.C. & Still, W.C. An internal coordinate Monte-Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4386 (1989).

    Article  CAS  Google Scholar 

  37. Gorostiza, P. et al. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc. Natl. Acad. Sci. USA 104, 10865–10870 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janovjak, H., Szobota, S., Wyart, C., Trauner, D. & Isacoff, E.Y. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat. Neurosci. 13, 1027–1032 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iacovelli, L. et al. Regulation of group II metabotropic glutamate receptors by G protein–coupled receptor kinases: mGlu2 receptors are resistant to homologous desensitization. Mol. Pharmacol. 75, 991–1003 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Raveh, A., Cooper, A., Guy-David, L. & Reuveny, E. Nonenzymatic rapid control of GIRK channel function by a G protein–coupled receptor kinase. Cell 143, 750–760 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Hanna, L. et al. Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist. Neuropharmacology 66, 114–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Ehrengruber, M.U. et al. Activation of heteromeric G protein–gated inward rectifier K+ channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 7070–7075 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi, T., Forsythe, I.D., Tsujimoto, T., Barnes-Davies, M. & Onodera, K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274, 594–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leaney, J.L. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein–gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur. J. Neurosci. 18, 2110–2118 (2003).

    Article  PubMed  Google Scholar 

  46. Koch, M. The neurobiology of startle. Prog. Neurobiol. 59, 107–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Burgess, H.A. & Granato, M. Sensorimotor gating in larval zebrafish. J. Neurosci. 27, 4984–4994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caporale, N. et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol. Ther. 19, 1212–1219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grauer, S.M. & Marquis, K.L. Intracerebral administration of metabotropic glutamate receptor agonists disrupts prepulse inhibition of acoustic startle in Sprague-Dawley rats. Psychopharmacology (Berl.) 141, 405–412 (1999).

    Article  CAS  Google Scholar 

  50. Haug, M.F., Gesemann, M., Mueller, T. & Neuhauss, S.C. Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio). J. Comp. Neurol. Published online, doi:10.1002/cne.23240 (10 October 2012).

  51. Bordoli, L. et al. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J. & Jorgensen, W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article  CAS  Google Scholar 

  53. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, 375–383 (2007).

    Article  Google Scholar 

  54. Vivaudou, M. et al. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J. Biol. Chem. 272, 31553–31560 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Bekkers, J.M. & Stevens, C.F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA 88, 7834–7838 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwan, K.M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Kurita, R. et al. Suppression of lens growth by alphaA-crystallin promoter–driven expression of diphtheria toxin results in disruption of retinal cell organization in zebrafish. Dev. Biol. 255, 113–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Grabher, C. & Wittbrodt, J. Meganuclease and transposon mediated transgenesis in medaka. Genome Biol. 8 (suppl. 1), S10 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A.P. Mariani (National Eye Institute) for 11-cis retinal, J.P. Pin (University of Montpellier) for the mGluR plasmids and E. Reuveny (Weizmann Institute) for the GIRK1 plasmid, K. Durkin, K. Dubay, T. Berger, G. Sandoz and S. Berlin for helpful discussions, A. Guyon, Z. Fu and S. Szobota for help with slice cultures, Z. Fu for molecular biology assistance, K. McDaniel, J. Maxfield, J. Saint-Hillaire and D. Weinman for fish care, E. Carroll for discussion and help with zebrafish set up, P. Gut (University of California, San Francisco) for zebrafish plasmids, H. Baier (University of California, San Francisco) for fish lines, and the College of Chemistry (University of California, Berkeley) for computing resources for the Monte Carlo simulations. Support for the work was provided by the Nanomedicine Development Center for the Optical Control of Biological Function, US National Institutes of Health grant PN2EY018241 (D.T. and E.Y.I.), the Human Frontier Science Program (RGP0013/2010 to E.Y.I.), the Deutsche Forschungsgemeinschaft (FOR 1279, D.T.), the Fond der Chemischen Industrie (Kekulé fellowship to P.S.), National Science Foundation grants CHE-0233882 and CHE-0840505 (to the College of Chemistry at the University of California, Berkeley), a postdoctoral fellowship of the European Molecular Biology Organization (H.J.), a Helen Hay Whitney postdoctoral fellowship (D.S.), the McKnight Endowment Fund for Neuroscience and US National Institutes of Health grant R01HL109525 (A.F.S.), and a predoctoral fellowship from the Fulbright Foundation (B.G.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed experiments and conducted homology modeling, Monte Carlo simulations, HEK293 cell patch experiments, cAMP measurements, cultured neuron and hippocampal slice patch experiments, analyzed data, and wrote the manuscript. C.P. designed zebrafish experiments, conducted zebrafish behavioral experiments, analyzed data, and wrote the manuscript. B.G. and A.R. conducted HEK293 cell patch experiments. H.J. designed and conducted Monte Carlo simulations. P.S. and B.K. synthesized photoswitches. A.H., D.S. and A.F.S. developed and setup zebrafish behavioral apparatus. D.T. developed photoswitching methodology and provided photoswitches. E.Y.I. supervised the project, designed experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Dirk Trauner or Ehud Y Isacoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 and Chemical Synthesis (PDF 1954 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitz, J., Pantoja, C., Gaub, B. et al. Optical control of metabotropic glutamate receptors. Nat Neurosci 16, 507–516 (2013). https://doi.org/10.1038/nn.3346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing