Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge

This article has been updated

Abstract

When sleep followed implicit training on a motor sequence, children showed greater gains in explicit sequence knowledge after sleep than adults. This greater explicit knowledge in children was linked to their higher sleep slow-wave activity and to stronger hippocampal activation at explicit knowledge retrieval. Our data indicate the superiority of children in extracting invariant features from complex environments, possibly as a result of enhanced reprocessing of hippocampal memory representations during slow-wave sleep.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental procedure, explicit sequence knowledge at retrieval testing, and sleep.
Figure 2: SWA during post-training sleep and BOLD signal responses during retrieval of explicit knowledge.

Change history

  • 03 March 2013

    In the version of this article initially published online, author names Björn Rasch and Christian Büchel were misspelled Bjöern Rasch and Christian Büechel. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. 1

    Cleeremans, A. Prog. Brain Res. 168, 19–33 (2008).

    Article  Google Scholar 

  2. 2

    Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. Nature 427, 352–355 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Yordanova, J. et al. Learn. Mem. 15, 508–515 (2008).

    Article  Google Scholar 

  4. 4

    Fischer, S., Drosopoulos, S., Tsen, J. & Born, J. J. Cogn. Neurosci. 18, 311–319 (2006).

    Article  Google Scholar 

  5. 5

    Payne, J.D. et al. Neurobiol. Learn. Mem. 92, 327–334 (2009).

    Article  Google Scholar 

  6. 6

    Diekelmann, S. & Born, J. Nat. Rev. Neurosci. 11, 114–126 (2010).

    CAS  Google Scholar 

  7. 7

    Kurth, S. et al. Sleep 33, 475–480 (2010).

    Article  Google Scholar 

  8. 8

    Ohayon, M.M., Carskadon, M.A., Guilleminault, C. & Vitiello, M.V. Sleep 27, 1255–1273 (2004).

    Article  Google Scholar 

  9. 9

    Rasch, B., Büchel, C., Gais, S. & Born, J. Science 315, 1426–1429 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Gais, S. et al. Proc. Natl. Acad. Sci. USA 104, 18778–18783 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Destrebecqz, A. et al. Learn. Mem. 12, 480–490 (2005).

    Article  Google Scholar 

  12. 12

    Darsaud, A. et al. J. Cogn. Neurosci. 23, 1900–1910 (2011).

    Article  Google Scholar 

  13. 13

    Rose, M., Haider, H. & Büchel, C. Cereb. Cortex 20, 2787–2797 (2010).

    Article  Google Scholar 

  14. 14

    Lewis, P.A. & Durrant, S.J. Trends Cogn. Sci. 15, 343–351 (2011).

    Article  Google Scholar 

  15. 15

    Payne, J.D. & Kensinger, E.A. J. Cogn. Neurosci. 23, 1285–1297 (2011).

    Article  Google Scholar 

  16. 16

    Schendan, H.E., Searl, M.M., Melrose, R.J. & Stern, C.E. Neuron 37, 1013–1025 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Thomas, K.M. et al. J. Cogn. Neurosci. 16, 1339–1351 (2004).

    Article  Google Scholar 

  18. 18

    Wilhelm, I., Prehn-Kristensen, A. & Born, J. Neurosci. Biobehav. Rev. 36, 1718–1728 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Dienes, Z. & Perner, J. Behav. Brain Sci. 22, 735–755 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Seger, C.A. Psychol. Bull. 115, 163–196 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Rechtschaffen, A. & Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects (US Department of Health, Education and Welfare, US National Institutes of Health, 1968).

  22. 22

    Albouy, G. et al. Neuron 58, 261–272 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Debas, K. et al. Proc. Natl. Acad. Sci. USA 107, 17839–17844 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Destrebecqz, A. et al. Learn. Mem. 12, 480–490 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Diekelmann, S. Groch, T. Ole Bergmann, K. Mueller, K. Wendt, T. Kraemer, H. Neumeyer, M. Menz, A. Marschner, G. Feld and D. McMakin for technical support and helpful discussions. This study was supported by the Deutsche Forschungsgemeinschaft (SFB 654 'Plasticity and Sleep').

Author information

Affiliations

Authors

Contributions

I.W. and K.I.I. conducted the experiments. I.W., B.R., M.R., J.B. and C.B. designed the experiments and analyzed the data. I.W., J.B. and C.B. wrote the paper.

Corresponding authors

Correspondence to Ines Wilhelm or Jan Born.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–4 (PDF 411 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilhelm, I., Rose, M., Imhof, K. et al. The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge. Nat Neurosci 16, 391–393 (2013). https://doi.org/10.1038/nn.3343

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing