Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex

Abstract

The complexity of the adult brain is a result of both developmental processes and experience-dependent circuit formation. One way to look at the differences between embryonic and adult brain is to examine gene expression. Previous studies have used microarrays to address this in a global manner. However, the transcriptome is more complex than gene expression levels alone, as alternative splicing and RNA editing generate a diverse set of mature transcripts. Here we report a high-resolution transcriptome data set of mouse cerebral cortex at embryonic and adult stages using RNA sequencing (RNA-Seq). We found many differences in gene expression, splicing and RNA editing between embryonic and adult cerebral cortex. Each data set was validated technically and biologically, and in each case we found our RNA-Seq observations to have predictive validity. We provide this data set and analysis as a resource for understanding gene expression in the embryonic and adult cerebral cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression.
Figure 2: Alternative exon utilization.
Figure 3: A-to-I RNA editing.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

NCBI Reference Sequence

References

  1. Innocenti, G.M. & Price, D.J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 6, 955–965 (2005).

    Article  CAS  Google Scholar 

  2. Price, D.J. et al. The development of cortical connections. Eur. J. Neurosci. 23, 910–920 (2006).

    Article  Google Scholar 

  3. Mody, M. et al. Genome-wide gene expression profiles of the developing mouse hippocampus. Proc. Natl. Acad. Sci. USA 98, 8862–8867 (2001).

    Article  CAS  Google Scholar 

  4. Kalsotra, A. & Cooper, T.A. Functional consequences of developmentally regulated alternative splicing. Nat. Rev. Genet. 12, 715–729 (2011).

    Article  CAS  Google Scholar 

  5. Licatalosi, D.D. & Darnell, R.B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75–87 (2010).

    Article  CAS  Google Scholar 

  6. Li, Q., Lee, J.-A. & Black, D.L. Neuronal regulation of alternative pre-mRNA splicing. Nat. Rev. Neurosci. 8, 819–831 (2007).

    Article  CAS  Google Scholar 

  7. Wojtowicz, W.M., Flanagan, J.J., Millard, S.S., Zipursky, S.L. & Clemens, J.C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619–633 (2004).

    Article  CAS  Google Scholar 

  8. Ullrich, B., Ushkaryov, Y.A. & Südhof, T.C. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14, 497–507 (1995).

    Article  CAS  Google Scholar 

  9. Hogg, M., Paro, S., Keegan, L.P. & O'Connell, M.A. RNA editing by mammalian ADARs. Adv. Genet. 73, 87–120 (2011).

    Article  CAS  Google Scholar 

  10. Blanc, V. & Davidson, N.O. APOBEC-1-mediated RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 594–602 (2010).

    Article  CAS  Google Scholar 

  11. Rueter, S.M., Dawson, T.R. & Emeson, R.B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article  CAS  Google Scholar 

  12. Serra, M.J., Smolter, P.E. & Westhof, E. Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res. 32, 1824–1828 (2004).

    Article  CAS  Google Scholar 

  13. Zhang, Z. & Carmichael, G.G. The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465–475 (2001).

    Article  CAS  Google Scholar 

  14. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  Google Scholar 

  15. Rosenthal, J.J.C. & Seeburg, P.H. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron 74, 432–439 (2012).

    Article  CAS  Google Scholar 

  16. Wahlstedt, H., Daniel, C., Ensterö, M. & Ohman, M. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res. 19, 978–986 (2009).

    Article  CAS  Google Scholar 

  17. 't Hoen, P.A.C. et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res. 36, e141 (2008).

    Article  Google Scholar 

  18. Keane, T.M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    Article  CAS  Google Scholar 

  19. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  20. McMillan, P. et al. Tau isoform regulation is region- and cell-specific in mouse brain. J. Comp. Neurol. 511, 788–803 (2008).

    Article  CAS  Google Scholar 

  21. Peng, Z. et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat. Biotechnol. 30, 253–260 (2012).

    Article  CAS  Google Scholar 

  22. Gu, T. et al. Canonical A-to-I and C-to-U RNA editing is enriched at 3′UTRs and microRNA target sites in multiple mouse tissues. PLoS ONE 7, e33720 (2012).

    Article  CAS  Google Scholar 

  23. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  Google Scholar 

  24. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  Google Scholar 

  25. Neeman, Y., Levanon, E.Y., Jantsch, M.F. & Eisenberg, E. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12, 1802–1809 (2006).

    Article  CAS  Google Scholar 

  26. DeCerbo, J. & Carmichael, G.G. SINEs point to abundant editing in the human genome. Genome Biol. 6, 216 (2005).

    Article  Google Scholar 

  27. Semeralul, M.O. et al. Microarray analysis of the developing cortex. J. Neurobiol. 66, 1646–1658 (2006).

    Article  CAS  Google Scholar 

  28. Kagami, Y. & Furuichi, T. Investigation of differentially expressed genes during the development of mouse cerebellum. Brain Res. Gene Expr. Patterns 1, 39–59 (2001).

    Article  CAS  Google Scholar 

  29. Matsuki, T., Hori, G. & Furuichi, T. Gene expression profiling during the embryonic development of mouse brain using an oligonucleotide-based microarray system. Brain Res. Mol. Brain Res. 136, 231–254 (2005).

    Article  CAS  Google Scholar 

  30. Bland, C.S. et al. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res. 38, 7651–7664 (2010).

    Article  CAS  Google Scholar 

  31. Ramsköld, D., Wang, E.T., Burge, C.B. & Sandberg, R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol. 5, e1000598 (2009).

    Article  Google Scholar 

  32. McKee, A.E. et al. Exon expression profiling reveals stimulus-mediated exon use in neural cells. Genome Biol. 8, R159 (2007).

    Article  Google Scholar 

  33. Stefl, R. & Allain, F.H.-T. A novel RNA pentaloop fold involved in targeting ADAR2. RNA 11, 592–597 (2005).

    Article  CAS  Google Scholar 

  34. Li, M. et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science 333, 53–58 (2011).

    Article  CAS  Google Scholar 

  35. Pickrell, J.K., Gilad, Y. & Pritchard, J.K. Comment on 'Widespread RNA and DNA sequence differences in the human transcriptome'. Science 335, 1302; author reply 1302 (2012).

    Article  CAS  Google Scholar 

  36. Kang, H.J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    Article  CAS  Google Scholar 

  37. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011).

    Article  CAS  Google Scholar 

  38. Itoh, K. Culture of oligodendrocyte precursor cells (NG2+/O1) and oligodendrocytes (NG2/O1+) from embryonic rat cerebrum. Brain Res. Brain Res. Protoc. 10, 23–30 (2002).

    Article  CAS  Google Scholar 

  39. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  40. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Lindquist for excellent technical assistance. We would also like to thank M. Do for assistance with cloning experiments. This research was supported in part by the Intramural Research Program of the US National Institutes of Health, National Institute on Aging (project AG000947) and by the Swedish Research Council and Swedish Brain Power.

Author information

Authors and Affiliations

Authors

Contributions

A.A.D. performed the RNA-Seq experiments and analyzed the data. J.R.G. and M.A.N. provided additional analytical approaches. D.N.H., M.K.M. and I.N.R. performed mouse dissections and contributed additional validation results. M.R.C. and D.G. supervised the project. M.R.C. and A.A.D. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Mark R Cookson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 1 and 5–7 (PDF 2934 kb)

Supplementary Table 2

Gene expression in the embryonic and adult mouse cerebral cortex. (CSV format) (XLS 711 kb)

Supplementary Table 3

Alternate exon usage in the embryonic and adult mouse cerebral cortex. (CSV format) (XLS 130 kb)

Supplementary Table 4

Adenosine-to-inosine RNA editing in the embryonic and adult mouse cerebral cortex. (CSV format) (XLS 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillman, A., Hauser, D., Gibbs, J. et al. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci 16, 499–506 (2013). https://doi.org/10.1038/nn.3332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing