Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reading and writing the neural code

Abstract

It has been more than 20 years since Bialek and colleagues published a landmark paper asking a seemingly innocuous question: what can we extract about the outside world from the spiking activity of sensory neurons? Can we read the neural code? Although this seemingly simple question has helped us shed light on the neural code, we still do not understand the anatomical and neurophysiological constraints that enable these codes to propagate across synapses and form the basis for computations that we need to interact with our environment. The sensitivity of neuronal activity to the timing of synaptic inputs naturally suggests that synchrony determines the form of the neural code, and, in turn, regulation of synchrony is a critical element in 'writing' the neural code through the artificial control of microcircuits to activate downstream structures. In this way, reading and writing the neural code are inextricably linked.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Georgopoulos, A.P., Kettner, R.E. & Schwartz, A.B. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci. 8, 2928–2937 (1988).

    CAS  Article  Google Scholar 

  2. Paradiso, M.A. A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol. Cybern. 58, 35–49 (1988).

    CAS  Article  Google Scholar 

  3. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    CAS  Article  Google Scholar 

  4. Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R. & Warland, D. Reading a neural code. Science 252, 1854–1857 (1991).

    CAS  Article  Google Scholar 

  5. Creutzfeldt, O.D. & Nothdurft, H.C. Representation of complex visual stimuli in the brain. Naturwissenschaften 65, 307–318 (1978).

    CAS  Article  Google Scholar 

  6. Warland, D.K., Reinagel, P. & Meister, M. Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol. 78, 2336–2350 (1997).

    CAS  Article  Google Scholar 

  7. Stanley, G.B., Li, F.F. & Dan, Y. Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus. J. Neurosci. 19, 8036–8042 (1999).

    CAS  Article  Google Scholar 

  8. Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C. & Wilson, M.A. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci. 18, 7411–7425 (1998).

    CAS  Article  Google Scholar 

  9. Zhang, K., Ginzburg, I., McNaughton, B.L. & Sejnowski, T.J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).

    CAS  Article  Google Scholar 

  10. Miyawaki, Y. et al. Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60, 915–929 (2008).

    CAS  Article  Google Scholar 

  11. Quian Quiroga, R. & Panzeri, S. Extracting information from neuronal populations: information theory and decoding approaches. Nat. Rev. Neurosci. 10, 173–185 (2009).

    CAS  Article  Google Scholar 

  12. Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    CAS  Article  Google Scholar 

  13. Fellous, J.-M., Tiesinga, P.H.E., Thomas, P.J. & Sejnowski, T.J. Discovering spike patterns in neuronal responses. J. Neurosci. 24, 2989–3001 (2004).

    CAS  Article  Google Scholar 

  14. Bazhenov, M., Rulkov, N.F., Fellous, J.-M. & Timofeev, I. Role of network dynamics in shaping spike timing reliability. Phys. Rev. E 72, 041903 (2005).

    Article  Google Scholar 

  15. Jacobs, A.L. et al. Ruling out and ruling in neural codes. Proc. Natl. Acad. Sci. USA 106, 5936–5941 (2009).

    CAS  Article  Google Scholar 

  16. Van Rullen, R. & Thorpe, S.J. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13, 1255–1283 (2001).

    CAS  Article  Google Scholar 

  17. Gollisch, T. & Meister, M. Rapid neural coding in the retina with relative spike latencies. Science 319, 1108–1111 (2008).

    CAS  Article  Google Scholar 

  18. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    CAS  Article  Google Scholar 

  19. Abbott, L.F. & Dayan, P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1999).

    CAS  Article  Google Scholar 

  20. Nirenberg, S. & Latham, P.E. Decoding neuronal spike trains: how important are correlations? Proc. Natl. Acad. Sci. USA 100, 7348–7353 (2003).

    CAS  Article  Google Scholar 

  21. Schneidman, E., Bialek, W. & Berry, M.J. Synergy, redundancy, and independence in population codes. J. Neurosci. 23, 11539–11553 (2003).

    CAS  Article  Google Scholar 

  22. Wang, H.-P., Spencer, D., Fellous, J.-M. & Sejnowski, T.J. Synchrony of thalamocortical inputs maximizes cortical reliability. Science 328, 106–109 (2010).

    CAS  Article  Google Scholar 

  23. Alonso, J.M., Usrey, W.M. & Reid, R.C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815–819 (1996).

    CAS  Article  Google Scholar 

  24. Bruno, R.M. & Sakmann, B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622–1627 (2006).

    CAS  Article  Google Scholar 

  25. Brette, R. Computing with neural synchrony. PLoS Comput. Biol. 8, e1002561 (2012).

    CAS  Article  Google Scholar 

  26. Swadlow, H.A. & Gusev, A.G. Receptive-field construction in cortical inhibitory interneurons. Nat. Neurosci. 5, 403–404 (2002).

    CAS  Article  Google Scholar 

  27. Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005).

    CAS  Article  Google Scholar 

  28. Butts, D.A. et al. Temporal precision in the neural code and the timescales of natural vision. Nature 449, 92–95 (2007).

    CAS  Article  Google Scholar 

  29. Stanley, G.B. et al. Visual orientation and directional selectivity through thalamic synchrony. J. Neurosci. 32, 9073–9088 (2012).

    CAS  Article  Google Scholar 

  30. Chase, S.M. & Young, E.D. First-spike latency information in single neurons increases when referenced to population onset. Proc. Natl. Acad. Sci. USA 104, 5175–5180 (2007).

    CAS  Article  Google Scholar 

  31. Johansson, R.S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177 (2004).

    CAS  Article  Google Scholar 

  32. Masquelier, T. Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model. J. Comput. Neurosci. 32, 425–441 (2012).

    Article  Google Scholar 

  33. Smith, M.A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).

    CAS  Article  Google Scholar 

  34. Ohiorhenuan, I.E. et al. Sparse coding and high-order correlations in fine-scale cortical networks. Nature 466, 617–621 (2010).

    CAS  Article  Google Scholar 

  35. Desbordes, G. et al. Timing precision in population coding of natural scenes in the early visual system. PLoS Biol. 6, e324 (2008).

    Article  Google Scholar 

  36. Sherman, S.M. A wake-up call from the thalamus. Nat. Neurosci. 4, 344–346 (2001).

    CAS  Article  Google Scholar 

  37. Lesica, N.A. & Stanley, G.B. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J. Neurosci. 24, 10731–10740 (2004).

    CAS  Article  Google Scholar 

  38. Lesica, N.A. et al. Dynamic encoding of natural luminance sequences by LGN bursts. PLoS Biol. 4, e209 (2006).

    Article  Google Scholar 

  39. Halassa, M.M. et al. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat. Neurosci. 14, 1118–1120 (2011).

    CAS  Article  Google Scholar 

  40. Wang, Q., Webber, R.M. & Stanley, G.B. Thalamic synchrony and the adaptive gating of information flow to cortex. Nat. Neurosci. 13, 1534–1541 (2010).

    CAS  Article  Google Scholar 

  41. Bernstein, J.G. et al. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. Proc. Soc. Photo Opt. Instrum. Eng. 6854, 68540H (2008).

    Google Scholar 

  42. Butovas, S. & Schwarz, C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J. Neurophysiol. 90, 3024–3039 (2003).

    Article  Google Scholar 

  43. Wang, Q., Millard, D.C., Zheng, H.J.V. & Stanley, G.B. Voltage-sensitive dye imaging reveals improved topographic activation of cortex in response to manipulation of thalamic microstimulation parameters. J. Neural Eng. 9, 026008 (2012).

    Article  Google Scholar 

  44. Gunaydin, L.A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    CAS  Article  Google Scholar 

  45. Stoelzel, C.R., Bereshpolova, Y. & Swadlow, H.A. Stability of thalamocortical synaptic transmission across awake brain states. J. Neurosci. 29, 6851–6859 (2009).

    CAS  Article  Google Scholar 

  46. Barlow, H. Possible principles underlying the transformation of sensory messages. in Sensory Communication (ed. Rosenbluth, W.A.) 217–234 (MIT Press, Cambridge, Massachusetts, USA, 1961).

  47. Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000).

    CAS  Article  Google Scholar 

  48. Lesica, N.A. et al. Adaptation to stimulus contrast and correlations during natural visual stimulation. Neuron 55, 479–491 (2007).

    CAS  Article  Google Scholar 

  49. Seki, K. & Fetz, E.E. Gating of sensory input at spinal and cortical levels during preparation and execution of voluntary movement. J. Neurosci. 32, 890–902 (2012).

    CAS  Article  Google Scholar 

  50. Szuts, T.A. et al. A wireless multi-channel neural amplifier for freely moving animals. Nat. Neurosci. 14, 263–269 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I would like to thank D.A. Butts, J.-M. Alonso, C. Schwarz and D.C. Millard for comments on the manuscript. G.B.S. was supported by US National Science Foundation Collaborative Research in Computational Neuroscience grants IIS-0904630 and IOS-1131948, and US National Institutes of Health National Institute of Neurological Disorders and Stroke grant 2R01NS048285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett B Stanley.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stanley, G. Reading and writing the neural code. Nat Neurosci 16, 259–263 (2013). https://doi.org/10.1038/nn.3330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3330

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing