Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-term dynamics of CA1 hippocampal place codes

This article has been updated

Abstract

Using Ca2+ imaging in freely behaving mice that repeatedly explored a familiar environment, we tracked thousands of CA1 pyramidal cells' place fields over weeks. Place coding was dynamic, as each day the ensemble representation of this environment involved a unique subset of cells. However, cells in the 15–25% overlap between any two of these subsets retained the same place fields, which sufficed to preserve an accurate spatial representation across weeks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ca2+ imaging in freely behaving mice.
Figure 2: Basic aspects of CA1 place codes are stable for weeks.
Figure 3: Place fields are spatially invariant and temporally stochastic while preserving a stable representation at the ensemble level.

Change history

  • 11 February 2013

    In the version of this article initially published online, the competing financial interests statement was missing. The error has been corrected in the HTML version of the article.

References

  1. O'Keefe, J.N.L. The Hippocampus as a Cognitive Map (Clarendon, 1978).

  2. Leutgeb, S. et al. Science 309, 619–623 (2005).

    CAS  Article  Google Scholar 

  3. Muller, R.U., Kubie, J.L. & Ranck, J.B. Jr. J. Neurosci. 7, 1935–1950 (1987).

    CAS  Article  Google Scholar 

  4. Thompson, L.T. & Best, P.J. Brain. Res. 509, 299–308 (1990).

    CAS  Article  Google Scholar 

  5. Kentros, C. et al. Science 280, 2121–2126 (1998).

    CAS  Article  Google Scholar 

  6. Lever, C., Wills, T., Cacucci, F., Burgess, N. & O'Keefe, J. Nature 416, 90–94 (2002).

    CAS  Article  Google Scholar 

  7. Kentros, C.G., Agnihotri, N.T., Streater, S., Hawkins, R.D. & Kandel, E.R. Neuron 42, 283–295 (2004).

    CAS  Article  Google Scholar 

  8. Cacucci, F., Wills, T.J., Lever, C., Giese, K.P. & O'Keefe, J. J. Neurosci. 27, 7854–7859 (2007).

    CAS  Article  Google Scholar 

  9. Muzzio, I.A. et al. PLoS Biol. 7, e1000140 (2009).

    Article  Google Scholar 

  10. Tian, L. et al. Nat. Methods 6, 875–881 (2009).

    CAS  Article  Google Scholar 

  11. Barretto, R.P. et al. Nat. Med. 17, 223–228 (2011).

    CAS  Article  Google Scholar 

  12. Ghosh, K.K. et al. Nat. Methods 8, 871–878 (2011).

    CAS  Article  Google Scholar 

  13. Mukamel, E.A., Nimmerjahn, A. & Schnitzer, M.J. Neuron 63, 747–760 (2009).

    CAS  Article  Google Scholar 

  14. Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L. & Tank, D.W. Nat. Neurosci. 13, 1433–1440 (2010).

    CAS  Article  Google Scholar 

  15. McHugh, T.J., Blum, K.I., Tsien, J.Z., Tonegawa, S. & Wilson, M.A. Cell 87, 1339–1349 (1996).

    CAS  Article  Google Scholar 

  16. Markus, E.J., Barnes, C.A., McNaughton, B.L., Gladden, V.L. & Skaggs, W.E. Hippocampus 4, 410–421 (1994).

    CAS  Article  Google Scholar 

  17. Nakazawa, K. et al. Neuron 38, 305–315 (2003).

    CAS  Article  Google Scholar 

  18. Rotenberg, A., Mayford, M., Hawkins, R.D., Kandel, E.R. & Muller, R.U. Cell 87, 1351–1361 (1996).

    CAS  Article  Google Scholar 

  19. Lisman, J.E. Trends Neurosci. 20, 38–43 (1997).

    CAS  Article  Google Scholar 

  20. Gradinaru, V. et al. J. Neurosci. 27, 14231–14238 (2007).

    CAS  Article  Google Scholar 

  21. Barretto, R.P., Messerschmidt, B. & Schnitzer, M.J. Nat. Methods 6, 511–512 (2009).

    CAS  Article  Google Scholar 

  22. Barretto, R.P.J. & Schnitzer, M.J. in Imaging: a Laboratory Manual (ed. R. Yuste) Ch. 50 (Cold Spring Harbor Laboratory Press, 2011).

  23. Thévenaz, P., Ruttimann, U.E. & Unser, M. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  Google Scholar 

  24. Nimmerjahn, A., Mukamel, E.A. & Schnitzer, M.J. Neuron 62, 400–412 (2009).

    CAS  Article  Google Scholar 

  25. Shannon, C.E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).

  26. Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C. & Wilson, M.A. J. Neurosci. 18, 7411–7425 (1998).

    CAS  Article  Google Scholar 

  27. Quian Quiroga, R. & Panzeri, S. Nat. Rev. Neurosci. 10, 173–185 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Looger (Janelia Farm Research Campus) for GCaMP3 plasmid, and A. Attardo, T. Davidson, J. Fitzgerald, J. Li, J.Z. Li, A. Lui, C. Ramachandran, O. Yizhar and T. Zhang for conversations and assistance. We appreciate fellowships from the US National Science Foundation (L.D.B., L.J.K.), the Simons (L.J.K.) and Machiah (Y.Z.) Foundations and research funding to M.J.S. from the Paul G. Allen Family Foundation and the US National Institutes of Health (grants DP1OD003560, R21AG038771 and R21MH099469).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., L.D.B. and M.J.S. designed experiments. Y.Z., L.D.B. and E.O.H. acquired data. L.D.B. and L.J.K. analyzed data. L.D.B., E.D.C. and K.K.G. built equipment. Y.Z., L.D.B., L.J.K. and M.J.S. wrote the paper. A.E.G. and M.J.S. supervised.

Corresponding authors

Correspondence to Yaniv Ziv or Mark J Schnitzer.

Ethics declarations

Competing interests

E.D.C., K.K.G. and L.D.B. are now full-time employees of Inscopix Inc., a company that has exclusive license to and is commercializing the integrated microscope technology. Y.Z., L.D.B., E.D.C., K.K.G., A.E.G. and M.J.S. have equity interests in Inscopix. Y.Z., A.E.G. and M.J.S. are consultants to Inscopix.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2196 kb)

Supplementary Movie 1

Ca2+-imaging in hundreds of CA1 pyramidal cells in a freely behaving mouse. A video showing a mouse exploring a circular arena (left panel) and the simultaneously acquired brain-imaging data of CA1 pyramidal cell Ca2+ activity, displayed as relative changes in fluorescence (ΔF/F) (right panel). 705 pyramidal cells were identified in the total data set and correspond to the neurons of Fig. 1b. The Ca2+-imaging frame rate was 20 Hz, but these data are shown down-sampled to 5 Hz to aid visualization of the Ca2+ transients. The video playback rate is sped up four-fold from how the events actually occurred. (MOV 22073 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ziv, Y., Burns, L., Cocker, E. et al. Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16, 264–266 (2013). https://doi.org/10.1038/nn.3329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing