Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The primate amygdala combines information about space and value

Abstract

A stimulus predicting reinforcement can trigger emotional responses, such as arousal, and cognitive ones, such as increased attention toward the stimulus. Neuroscientists have long appreciated that the amygdala mediates spatially nonspecific emotional responses, but it remains unclear whether the amygdala links motivational and spatial representations. To test whether amygdala neurons encode spatial and motivational information, we presented reward-predictive cues in different spatial configurations to monkeys and assessed how these cues influenced spatial attention. Cue configuration and predicted reward magnitude modulated amygdala neural activity in a coordinated fashion. Moreover, fluctuations in activity were correlated with trial-to-trial variability in spatial attention. Thus, the amygdala integrates spatial and motivational information, which may influence the spatial allocation of cognitive resources. These results suggest that amygdala dysfunction may contribute to deficits in cognitive processes normally coordinated with emotional responses, such as the directing of attention toward the location of emotionally relevant stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motivational cues bias spatial attention.
Figure 2: Reconstruction of recording locations.
Figure 3: Amygdala neurons encode the value and spatial configuration of cues.
Figure 4: Latency of value discrimination by amygdala neurons depends on cue spatial configuration.
Figure 5: Latency of visual information is insensitive to spatial location.
Figure 6: The encoding of space, value and stimulus identity by amygdala neurons evolves according to task demands.
Figure 7: Trial-to-trial variations in firing rates are correlated with reaction time.

Similar content being viewed by others

References

  1. Lang, P.J. & Davis, M. Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog. Brain Res. 156, 3–29 (2006).

    Article  Google Scholar 

  2. Ohman, A. & Wiens, S. in Handbook of Affective Sciences (eds. Davidson, R.J., Sherer, K.R. & Goldsmith, H.H.) Ch. 13 (Oxford University Press, 2003).

  3. Anderson, A.K. Affective influences on the attentional dynamics supporting awareness. J. Exp. Psychol. Gen. 134, 258–281 (2005).

    Article  Google Scholar 

  4. Armony, J.L. & Dolan, R.J. Modulation of spatial attention by fear-conditioned stimuli: an event-related fMRI study. Neuropsychologia 40, 817–826 (2002).

    Article  Google Scholar 

  5. Phelps, E.A., Ling, S. & Carrasco, M. Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol. Sci. 17, 292–299 (2006).

    Article  Google Scholar 

  6. Klein, J.T., Shepherd, S.V. & Platt, M.L. Social attention and the brain. Curr. Biol. 19, R958–R962 (2009).

    Article  CAS  Google Scholar 

  7. Anderson, B.A., Laurent, P.A. & Yantis, S. Value-driven attentional capture. Proc. Natl. Acad. Sci. USA 108, 10367–10371 (2011).

    Article  CAS  Google Scholar 

  8. Phelps, E.A. & LeDoux, J.E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    Article  CAS  Google Scholar 

  9. Paton, J.J., Belova, M.A., Morrison, S.E. & Salzman, C.D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Article  CAS  Google Scholar 

  10. Belova, M.A., Paton, J.J. & Salzman, C.D. Moment-to-moment tracking of state value in the amygdala. J. Neurosci. 28, 10023–10030 (2008).

    Article  CAS  Google Scholar 

  11. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  12. Adolphs, R. et al. A mechanism for impaired fear recognition after amygdala damage. Nature 433, 68–72 (2005).

    Article  CAS  Google Scholar 

  13. Davis, M. & Whalen, P.J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).

    Article  CAS  Google Scholar 

  14. Posner, M.I., Snyder, C.R. & Davidson, B.J. Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980).

    Article  CAS  Google Scholar 

  15. Parasuraman, R. & Davies, D.R. Varieties of Attention (Academic Press, 1984).

  16. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).

    Article  Google Scholar 

  17. Kable, J.W. & Glimcher, P.W. The neurobiology of decision: consensus and controversy. Neuron 63, 733–745 (2009).

    Article  CAS  Google Scholar 

  18. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6, 363–375 (2005).

    Article  CAS  Google Scholar 

  19. Louie, K., Grattan, L.E. & Glimcher, P.W. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

    Article  CAS  Google Scholar 

  20. Lau, B. & Glimcher, P.W. Value representations in the primate striatum during matching behavior. Neuron 58, 451–463 (2008).

    Article  CAS  Google Scholar 

  21. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  22. Cai, X., Kim, S. & Lee, D. Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice. Neuron 69, 170–182 (2011).

    Article  CAS  Google Scholar 

  23. Maunsell, J.H. Neuronal representations of cognitive state: reward or attention? Trends Cogn. Sci. 8, 261–265 (2004).

    Article  Google Scholar 

  24. Peck, C.J., Jangraw, D.C., Suzuki, M., Efem, R. & Gottlieb, J. Reward modulates attention independently of action value in posterior parietal cortex. J. Neurosci. 29, 11182–11191 (2009).

    Article  CAS  Google Scholar 

  25. Morrison, S.E. & Salzman, C.D. The convergence of information about rewarding and aversive stimuli in single neurons. J. Neurosci. 29, 11471–11483 (2009).

    Article  CAS  Google Scholar 

  26. Morrison, S.E., Saez, A., Lau, B. & Salzman, C.D. Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron 71, 1127–1140 (2011).

    Article  CAS  Google Scholar 

  27. Cai, X. & Padoa-Schioppa, C. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex. J. Neurosci. 32, 3791–3808 (2012).

    Article  CAS  Google Scholar 

  28. Ghashghaei, H.T., Hilgetag, C.C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905–923 (2007).

    Article  CAS  Google Scholar 

  29. Freese, J.L. & Amaral, D.G. in The Human Amygdala (eds. Whalen, P.J. & Phelps, E.A.) Ch. 1, 3–42 (Guilford Press, 2009).

  30. Tamietto, M. & de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709 (2010).

    Article  CAS  Google Scholar 

  31. Pessoa, L. & Adolphs, R. Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance. Nat. Rev. Neurosci. 11, 773–783 (2010).

    Article  CAS  Google Scholar 

  32. Rolls, E.T., Judge, S.J. & Sanghera, M.K. Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res. 130, 229–238 (1977).

    Article  CAS  Google Scholar 

  33. Liu, Z. & Richmond, B.J. Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83, 1677–1692 (2000).

    Article  CAS  Google Scholar 

  34. DiCarlo, J.J. & Maunsell, J.H. Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J. Neurophysiol. 89, 3264–3278 (2003).

    Article  Google Scholar 

  35. Swadlow, H.A., Rosene, D.L. & Waxman, S.G. Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey. Exp. Brain Res. 33, 455–467 (1978).

    Article  CAS  Google Scholar 

  36. Demeter, S., Rosene, D.L. & Van Hoesen, G.W. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques. J. Comp. Neurol. 302, 29–53 (1990).

    Article  CAS  Google Scholar 

  37. Ghashghaei, H.T. & Barbas, H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115, 1261–1279 (2002).

    Article  CAS  Google Scholar 

  38. Kennerley, S.W. & Wallis, J.D. Reward-dependent modulation of working memory in lateral prefrontal cortex. J. Neurosci. 29, 3259–3270 (2009).

    Article  CAS  Google Scholar 

  39. Corbetta, M., Patel, G. & Shulman, G.L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article  CAS  Google Scholar 

  40. Kaping, D., Vinck, M., Hutchison, R.M., Everling, S. & Womelsdorf, T. Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLoS Biol. 9, e1001224 (2011).

    Article  CAS  Google Scholar 

  41. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  42. Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984 (2007).

    Article  CAS  Google Scholar 

  43. Kapp, B.S., Supple, W.F. Jr. & Whalen, P.J. Effects of electrical stimulation of the amygdaloid central nucleus on neocortical arousal in the rabbit. Behav. Neurosci. 108, 81–93 (1994).

    Article  CAS  Google Scholar 

  44. Roesch, M.R., Calu, D.J., Esber, G.R. & Schoenbaum, G. All that glitters dissociating attention and outcome expectancy from prediction errors signals. J. Neurophysiol. 104, 587–595 (2010).

    Article  Google Scholar 

  45. Holland, P.C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci. 3, 65–73 (1999).

    Article  CAS  Google Scholar 

  46. Ursin, H. & Kaada, B.R. Functional localization within the amygdaloid complex in the cat. Electroencephalogr. Clin. Neurophysiol. 12, 1–20 (1960).

    Article  CAS  Google Scholar 

  47. Padmala, S. & Pessoa, L. Affective learning enhances visual detection and responses in primary visual cortex. J. Neurosci. 28, 6202–6210 (2008).

    Article  CAS  Google Scholar 

  48. Vuilleumier, P., Richardson, M.P., Armony, J.L., Driver, J. & Dolan, R.J. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat. Neurosci. 7, 1271–1278 (2004).

    Article  CAS  Google Scholar 

  49. Baron-Cohen, S. et al. The amygdala theory of autism. Neurosci. Biobehav. Rev. 24, 355–364 (2000).

    Article  CAS  Google Scholar 

  50. Pinkham, A.E., Hopfinger, J.B., Pelphrey, K.A., Piven, J. & Penn, D.L. Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophr. Res. 99, 164–175 (2008).

    Article  Google Scholar 

  51. Olejnik, S. & Algina, J. Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol. Methods 8, 434–447 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Kandel and K. Louie for discussions and comments on the manuscript, S. Dashnaw for MRI support, G. Asfaw for veterinary support, and K. Marmon and N. Macfarlane for technical support. This research was supported by grants to C.D.S. from the US National Institute of Mental Health (NIMH) (R01 MH082017) and the US National Institute on Drug Abuse (R01 DA020656), and by a core grant from the US National Eye Institute (NEI) (P30-EY19007) to Columbia University; C.J.P. received support from NIH (T32-HD07430, T32-NS06492 and T32-EY139333); B.L. received support from the NIMH (T32-MH015144) and the Helen Hay Whitney Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.L. initiated the project; C.J.P. and B.L. designed the experiments, collected the data and wrote the manuscript; C.J.P. analyzed data with assistance from B.L.; C.D.S. supervised and provided input about all aspects of the project and edited the manuscript.

Corresponding author

Correspondence to C Daniel Salzman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 6672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peck, C., Lau, B. & Salzman, C. The primate amygdala combines information about space and value. Nat Neurosci 16, 340–348 (2013). https://doi.org/10.1038/nn.3328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing