Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons


The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, we developed an electrochemical in vivo gene delivery method to rapidly manipulate gene expression specifically in postmitotic neurons. Using this approach, we found that the molecular identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny neurons could be specifically reprogrammed during the first postnatal week by ectopic expression of the layer 5B output neuron–specific transcription factor Fezf2. These findings reveal a high degree of plasticity in the identity of postmitotic neocortical neurons and provide a proof of principle for postnatal re-engineering of specific neural microcircuits in vivo.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: iPo allows rapid delivery of genetic constructs into postmitotic neurons with high spatial precision.
Figure 2: Postnatal expression of Fezf2 in L4 neurons induces cardinal molecular features of L5B output neurons.
Figure 3: Fezf2+ L4 neurons acquire a L5B neuron–like morphology.
Figure 4: Fezf2+ L4 neurons acquire L5B neuron–like output properties.
Figure 5: Fezf2+ L4 neurons acquire L5B-like subcortical inputs.
Figure 6: Fezf2+ L4 neurons acquire L5B-like intracortical inputs.


  1. 1

    Lefort, S., Tomm, C., Sarria, J.C.F. & Petersen, C.C.H. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    CAS  PubMed  Google Scholar 

  2. 2

    Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Brown, S.P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Yoshimura, Y., Dantzker, J.L.M. & Callaway, E.M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    CAS  Google Scholar 

  5. 5

    Schubert, D., Kötter, R. & Staiger, J.F. Mapping functional connectivity in barrel-related columns reveals layer- and cell type–specific microcircuits. Brain Struct. Funct. 212, 107–119 (2007).

    PubMed  Google Scholar 

  6. 6

    Molnár, Z. & Cheung, A.F.P. Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci. Res. 55, 105–115 (2006).

    PubMed  Google Scholar 

  7. 7

    Molyneaux, B.J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J.D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    CAS  PubMed  Google Scholar 

  8. 8

    Chen, J.-G., Rasin, M.-R., Kwan, K.Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. USA 102, 17792–17797 (2005).

    CAS  PubMed  Google Scholar 

  9. 9

    Han, W. et al. TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc. Natl. Acad. Sci. USA 108, 3041–3046 (2011).

    CAS  PubMed  Google Scholar 

  10. 10

    Weimann, J.M. et al. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819–831 (1999).

    CAS  PubMed  Google Scholar 

  11. 11

    Sperry, R. Effect of 180 degree rotation of the retinal field on visuomotor coordination. J. Exp. Zool. 92, 263–279 (1943).

    Google Scholar 

  12. 12

    Van der Loos, H. & Woolsey, T.A. Somatosensory cortex: structural alterations following early injury to sense organs. Science 179, 395–398 (1973).

    CAS  PubMed  Google Scholar 

  13. 13

    Sur, M., Garraghty, P.E. & Roe, A.W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437–1441 (1988).

    CAS  PubMed  Google Scholar 

  14. 14

    Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Martinez-Cerdeño, V. et al. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA–lesioned rats. Cell Stem Cell 6, 238–250 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Czupryn, A. et al. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334, 1133–1137 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Molyneaux, B.J., Arlotta, P., Menezes, J.R.L. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    CAS  PubMed  Google Scholar 

  18. 18

    Barnabé-Heider, F. et al. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat. Methods 5, 189–196 (2008).

    PubMed  Google Scholar 

  19. 19

    Lowery, R.L. et al. Rapid, long-term labeling of cells in the developing and adult rodent visual cortex using double-stranded adeno-associated viral vectors. Dev. Neurobiol. 69, 674–688 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Staiger, J.F. et al. Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb. Cortex 14, 690–701 (2004).

    PubMed  Google Scholar 

  21. 21

    Lübke, J., Egger, V., Sakmann, B. & Feldmeyer, D. Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J. Neurosci. 20, 5300–5311 (2000).

    PubMed  Google Scholar 

  22. 22

    Chen, B., Schaevitz, L.R. & McConnell, S.K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. USA 102, 17184–17189 (2005).

    CAS  PubMed  Google Scholar 

  23. 23

    Vandenbroucke, R.E., Lucas, B., Demeester, J., De Smedt, S.C. & Sanders, N.N. Nuclear accumulation of plasmid DNA can be enhanced by non-selective gating of the nuclear pore. Nucleic Acids Res. 35, e86 (2007).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Matsuda, T. & Cepko, C.L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl. Acad. Sci. USA 104, 1027–1032 (2007).

    CAS  Google Scholar 

  25. 25

    De Marco García, N.V., Karayannis, T. & Fishell, G. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–355 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Jabaudon, D., Shnider, S.J., Tischfield, D.J., Galazo, M.J. & Macklis, J. D. RORß induces barrel-like neuronal clusters in the developing neocortex. Cereb. Cortex 22, 996–1006 (2012).

    PubMed  Google Scholar 

  28. 28

    Nakagawa, Y. & O'Leary, D.D.M. Dynamic patterned expression of orphan nuclear receptor genes RORalpha and RORbeta in developing mouse forebrain. Dev. Neurosci. 25, 234–244 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).

    CAS  PubMed  Google Scholar 

  30. 30

    Alcamo, E.A. et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364–377 (2008).

    CAS  PubMed  Google Scholar 

  31. 31

    Britanova, O. et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57, 378–392 (2008).

    CAS  PubMed  Google Scholar 

  32. 32

    Yoneshima, H. et al. Er81 is expressed in a subpopulation of layer 5 neurons in rodent and primate neocortices. Neuroscience 137, 401–412 (2006).

    CAS  PubMed  Google Scholar 

  33. 33

    Arlotta, P. et al. Neuronal subtype–specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Lai, T. et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57, 232–247 (2008).

    CAS  PubMed  Google Scholar 

  35. 35

    Kwan, K.Y. et al. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc. Natl. Acad. Sci. USA 105, 16021–16026 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Inda, M.C., DeFelipe, J. & Muñoz, A. Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc. Natl. Acad. Sci. USA 103, 2920–2925 (2006).

    CAS  PubMed  Google Scholar 

  37. 37

    Connors, B.W. & Gutnick, M.J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Andjelic, S. et al. Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. J. Neurophysiol. 101, 641–654 (2009).

    CAS  PubMed  Google Scholar 

  39. 39

    Sheets, P.L. et al. Corticospinal-specific HCN expression in mouse motor cortex: Ih-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. J. Neurophysiol. 106, 2216–2231 (2011).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Narboux-Nême, N. et al. Neurotransmitter release at the thalamocortical synapse instructs barrel formation, but not axon patterning in the somatosensory cortex. J. Neurosci. 32, 6183–6196 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Viaene, A.N., Petrof, I. & Sherman, S.M. Synaptic properties of thalamic input to the subgranular layers of primary somatosensory and auditory cortices in the mouse. J. Neurosci. 31, 12738–12747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    CAS  PubMed  Google Scholar 

  43. 43

    Putignano, E. et al. Developmental downregulation of histone post-translational modifications regulates visual cortical plasticity. Neuron 53, 747–759 (2007).

    CAS  PubMed  Google Scholar 

  44. 44

    Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    CAS  PubMed  Google Scholar 

  45. 45

    Kim, J., Ambasudhan, R. & Ding, S. Direct lineage reprogramming to neural cells. Curr. Opin. Neurobiol. 22, 778–784 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Callaway, E.M. & Borrell, V. Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J. Neurosci. 31, 7456–7470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Cubelos, B. et al. Cux1 and Cux2 regulate dendritic branching, spine morphology and synapses of the upper layer neurons of the cortex. Neuron 66, 523–535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Terashima, T., Inoue, K., Inoue, Y., Mikoshiba, K. & Tsukada, Y. Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J. Comp. Neurol. 232, 83–98 (1985).

    CAS  PubMed  Google Scholar 

  49. 49

    Lörincz, A., Notomi, T., Tamás, G., Shigemoto, R. & Nusser, Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat. Neurosci. 5, 1185–1193 (2002).

    PubMed  Google Scholar 

  50. 50

    Flames, N. & Hobert, O. Gene regulatory logic of dopamine neuron differentiation. Nature 458, 885–889 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Liashkovich, I., Meyring, A., Kramer, A. & Shahin, V. Exceptional structural and mechanical flexibility of the nuclear pore complex. J. Cell. Physiol. 226, 675–682 (2011).

    CAS  PubMed  Google Scholar 

  52. 52

    Berndt, A. et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl. Acad. Sci. USA 108, 7595–7600 (2011).

    CAS  PubMed  Google Scholar 

  53. 53

    Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Bannister, N.J. et al. Developmental changes in AMPA and kainate receptor–mediated quantal transmission at thalamocortical synapses in the barrel cortex. J. Neurosci. 25, 5259–5271 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Daw, M.I., Bannister, N.V. & Isaac, J.T. Rapid, activity-dependent plasticity in timing precision in neonatal barrel cortex. J. Neurosci. 26, 4178–4187 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank G. Fishell (New York University) for the gift of the Dlx5/6 plasmid, C.L. Cepko (Harvard University) for the pCAGIG_IRES_GFP and pCAG_ERT2-CRE-ERT2 plasmids, and B. Sauer (US National Institutes of Health) for the pBS302_STOP plasmid, obtained through Addgene. We are thankful to E. Azim and A. Dayer for helpful comments on the manuscript, and to A. Zimmerman and F. Smets for help with the experiments. We thank B. Cerutti for help with the statistical analysis. C.B. is supported by an Ambizione grant from the Swiss National Science Foundation. C.L. is supported by the Swiss National Science Foundation. The Jabaudon laboratory is supported by the Swiss National Science Foundation (PP00P3-123447), the Velux Foundation, the 3R Foundation and the Brain and Behavior Research Foundation. N.T. and J.M. are supported by the Swiss National Science Foundation (PP00A-119026). D.J. and N.T. are supported by a joint Leenaards Foundation for Scientific Research Award.

Author information




D.J. and A.D.l.R. conceived the project and designed the experiments, D.J. and C.B. designed the electrophysiological experiments, and A.D.l.R., C.B., B.G., J.M., N.T. and I.V. performed the experiments. D.J., A.D.l.R., C.B. and C.L. wrote the manuscript.

Corresponding author

Correspondence to Denis Jabaudon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 4832 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De la Rossa, A., Bellone, C., Golding, B. et al. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci 16, 193–200 (2013).

Download citation

Further reading


Quick links