Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream

Abstract

The accessory olfactory bulb (AOB) is a critical olfactory structure that has been implicated in mediating social behavior. It receives input from the vomeronasal organ and projects to targets in the amygdaloid complex. Its anterior and posterior components (aAOB and pAOB) display molecular, connectional and functional segregation in processing reproductive and defensive and aggressive behaviors, respectively. We observed a dichotomy in the development of the projection neurons of the aAOB and pAOB in mice. We found that they had distinct sites of origin and that different regulatory molecules were required for their specification and migration. aAOB neurons arose locally in the rostral telencephalon, similar to main olfactory bulb neurons. In contrast, pAOB neurons arose caudally, from the neuroepithelium of the diencephalic-telencephalic boundary, from which they migrated rostrally to reach their destination. This unusual origin and migration is conserved in Xenopus, providing an insight into the origin of a key component of this system in evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pAOB projection neurons migrate from the caudal telencephalon.
Figure 2: The DTB is the origin of the pAOB stream.
Figure 3: In utero electroporation reveals a stream of cells migrating from the caudal telencephalon to the pAOB.
Figure 4: Distinct mechanisms of pAOB and aAOB specification and migration.
Figure 5: pAOB cells do not use mechanisms required by Cajal-Retzius cells or the LOT tract.
Figure 6: Shh can guide the pAOB stream trajectory.
Figure 7: AOB markers in Xenopus suggest a migrating stream from the DTB.
Figure 8: Fluorescent microsphere injection reveals a DTB-to-AOB migration in Xenopus.

Similar content being viewed by others

References

  1. Kumar, A., Dudley, C.A. & Moss, R.L. Functional dichotomy within the vomeronasal system: distinct zones of neuronal activity in the accessory olfactory bulb correlate with sex-specific behaviors. J. Neurosci. 19, RC32 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGregor, I.S., Hargreaves, G.A., Apfelbach, R. & Hunt, G.E. Neural correlates of cat odor–induced anxiety in rats: region-specific effects of the benzodiazepine midazolam. J. Neurosci. 24, 4134–4144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wagner, S., Gresser, A.L., Torello, A.T. & Dulac, C. A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron 50, 697–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Del Punta, K., Puche, A., Adams, N.C., Rodriguez, I. & Mombaerts, P. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35, 1057–1066 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Choi, G.B. et al. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46, 647–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Mohedano-Moriano, A. et al. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur. J. Neurosci. 25, 2065–2080 (2007).

    Article  PubMed  Google Scholar 

  7. Takami, S., Graziadei, P.P. & Ichikawa, M. The differential staining patterns of two lectins in the accessory olfactory bulb of the rat. Brain Res. 598, 337–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Halpern, M. & Martinez-Marcos, A. Structure and function of the vomeronasal system: an update. Prog. Neurobiol. 70, 245–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Halpern, M., Shapiro, L.S. & Jia, C. Heterogeneity in the accessory olfactory system. Chem. Senses 23, 477–481 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Jia, C. & Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G(o alpha)) and segregated projections to the accessory olfactory bulb. Brain Res. 719, 117–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Faedo, A. et al. Developmental expression of the T-box transcription factor Tbet/ Tbx21 during mouse embryogenesis. Mech. Dev. 116, 157–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Abellán, A., Vernier, B., Retaux, S. & Medina, L. Similarities and differences in the forebrain expression of Lhx1 and Lhx5 between chicken and mouse: insights for understanding telencephalic development and evolution. J. Comp. Neurol. 518, 3512–3528 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Rakic, P. Principles of neural cell migration. Experientia 46, 882–891 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miyoshi, G. & Fishell, G. GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. Cereb. Cortex 21, 845–852 (2011).

    Article  PubMed  Google Scholar 

  16. Inaki, K., Nishimura, S., Nakashiba, T., Itohara, S. & Yoshihara, Y. Laminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition molecules. J. Comp. Neurol. 479, 243–256 (2004).

    Article  PubMed  Google Scholar 

  17. Saha, B., Hari, P., Huilgol, D. & Tole, S. Dual role for LIM-homeodomain gene Lhx2 in the formation of the lateral olfactory tract. J. Neurosci. 27, 2290–2297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takiguchi-Hayashi, K. et al. Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Imayoshi, I., Shimogori, T., Ohtsuka, T. & Kageyama, R. Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development 135, 2531–2541 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Miquelajáuregui, A. et al. LIM-homeobox gene Lhx5 is required for normal development of Cajal-Retzius cells. J. Neurosci. 30, 10551–10562 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sato, Y. et al. Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev. Biol. 305, 616–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Bulfone, A. et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21, 1273–1282 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Tsai, L.H., Takahashi, T., Caviness, V.S. Jr. & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040 (1993).

    CAS  PubMed  Google Scholar 

  24. Gilmore, E.C., Ohshima, T., Goffinet, A.M., Kulkarni, A.B. & Herrup, K. Cyclin-dependent kinase 5–deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Remedios, R. et al. A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat. Neurosci. 10, 1141–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ohshima, T. et al. Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 134, 2273–2282 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hirasawa, M. et al. Perinatal abrogation of Cdk5 expression in brain results in neuronal migration defects. Proc. Natl. Acad. Sci. USA 101, 6249–6254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shinozaki, K. et al. Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development 129, 3479–3492 (2002).

    CAS  PubMed  Google Scholar 

  29. Meyer, G. et al. Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. J. Neurosci. 24, 9878–9887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paredes, M.F., Li, G., Berger, O., Baraban, S.C. & Pleasure, S.J. Stromalderived factor-1 (CXCL12) regulates laminar position of Cajal-Retzius cells in normal and dysplastic brains. J. Neurosci. 26, 9404–9412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen-Ba-Charvet, K.T., Plump, A.S., Tessier-Lavigne, M. & Chedotal, A. Slit1 and slit2 proteins control the development of the lateral olfactory tract. J. Neurosci. 22, 5473–5480 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawasaki, T., Ito, K. & Hirata, T. Netrin 1 regulates ventral tangential migration of guidepost neurons in the lateral olfactory tract. Development 133, 845–853 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen-Ba-Charvet, K.T. et al. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J. Neurosci. 24, 1497–1506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Angot, E. et al. Chemoattractive activity of sonic hedgehog in the adult subventricular zone modulates the number of neural precursors reaching the olfactory bulb. Stem Cells 26, 2311–2320 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Balordi, F. & Fishell, G. Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. J. Neurosci. 27, 5936–5947 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holmgren, N. Points of view concerning forebrain morphology in lower vertebrates. J. Comp. Neurol. 34, 391–459 (1922).

    Article  Google Scholar 

  37. Krug, L., Wicht, H. & Northcutt, R.G. Afferent and efferent connections of the thalamic eminence in the axolotl, Ambystoma mexicanum. Neurosci. Lett. 149, 145–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Moreno, N. et al. Anuran olfactory bulb organization: embryology, neurochemistry and hodology. Brain Res. Bull. 75, 241–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Anderson, S.A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J.L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  40. Corbin, J.G., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat. Neurosci. 4, 1177–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Meyer, G., Perez-Garcia, C.G., Abraham, H. & Caput, D. Expression of p73 and Reelin in the developing human cortex. J. Neurosci. 22, 4973–4986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schiffmann, S.N., Bernier, B. & Goffinet, A.M. Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9, 1055–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Hevner, R.F., Neogi, T., Englund, C., Daza, R.A. & Fink, A. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141, 39–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Halpern, M. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10, 325–362 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Soma, M. et al. Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J. Comp. Neurol. 513, 113–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. García-Moreno, F. et al. A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat. Neurosci. 13, 680–689 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Tissir, F. et al. DeltaNp73 regulates neuronal survival in vivo. Proc. Natl. Acad. Sci. USA 106, 16871–16876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rakić, S. et al. Cortical interneurons require p35/Cdk5 for their migration and laminar organization. Cereb. Cortex 19, 1857–1869 (2009).

    Article  PubMed  Google Scholar 

  49. Taniguchi, K., Saito, S. & Oikawa, T. Phylogenic aspects of the amphibian dual olfactory system. J. Vet. Med. Sci. 70, 1–9 (2008).

    Article  PubMed  Google Scholar 

  50. Hagino-Yamagishi, K. et al. Expression of vomeronasal receptor genes in Xenopus laevis. J. Comp. Neurol. 472, 246–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11173–11178 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao, Y. et al. Control of hippocampal morphogenesis and neuronal differentiation by the LIM homeobox gene Lhx5. Science 284, 1155–1158 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Hevner, R.F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Bagri, A. et al. The chemokine SDF1 regulates migration of dentate granule cells. Development 129, 4249–4260 (2002).

    CAS  PubMed  Google Scholar 

  55. Barallobre, M.J. et al. Aberrant development of hippocampal circuits and altered neural activity in netrin 1–deficient mice. Development 127, 4797–4810 (2000).

    CAS  PubMed  Google Scholar 

  56. Plump, A.S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Matsui, A., Yoshida, A.C., Kubota, M., Ogawa, M. & Shimogori, T. Mouse in utero electroporation: controlled spatiotemporal gene transfection. J. Vis. Exp. published online, doi:10.3791/3024 (15 August 2011).

  58. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus Laevis (Daudin), 2nd edn. (North-Holland Publishing Co., Amsterdam, 1967).

  59. Katz, L.C. & Iarovici, D.M. Green fluorescent latex microspheres: a new retrograde tracer. Neuroscience 34, 511–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Yun, K., Potter, S. & Rubenstein, J.L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Faedo (University of California, San Francisco), E.A. Grove (University of Chicago), R. Kageyama (Kyoto University), F.D. Porter (US National Institute of Child Health and Human Development), S. Retaux (Centre national de la recherche scientifique, France), T. Sargent (US National Institute of Child Health and Human Development), N. Tamamaki (Kumamoto University) and T. Williams (University of Colorado, Denver) for gifts of plasmid DNA, and the Tata Institute of Fundamental Research Animal House staff for excellent support. We thank M. Hynes (Stanford University) for Netrin1 mutants and L. Richards (Queensland Brain Institute) for Slit1; Slit2 double mutants. This work was supported by a Swarnajayanti Fellowship (Department of Science and Technology, India), a grant from the Department of Biotechnology and a grant from the Lady Tata Memorial Trust to S.T., and a Kanwal Rekhi Career Development Award (Tata Institute of Fundamental Research Endowment Fund) to B.S.

Author information

Authors and Affiliations

Authors

Contributions

D.H. and S.T. planned the experiments and wrote the paper. D.H., B.S. and S.T. analyzed the data. D.H. performed experiments for all figures. S.U. performed the fluorescent microsphere placements shown in Figure 8 and provided the tadpoles. T.S. performed the in utero electroporation experiments shown in Figure 3 and Supplementary Figure 2. B.S. contributed to Figures 1 and 2. A.R. contributed to Figure 2 and Supplementary Figure 1. Mutant embryos were contributed by S.A. (Emx1; Emx2 double mutant), R.F.H. (Tbr1), G.M. (P73), T.O. (Cdk5), S.J.P. (Cxcr4) and Y.Z. (Lhx5).

Corresponding author

Correspondence to Shubha Tole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huilgol, D., Udin, S., Shimogori, T. et al. Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nat Neurosci 16, 157–165 (2013). https://doi.org/10.1038/nn.3297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing