Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A subpopulation of nociceptors specifically linked to itch


Itch-specific neurons have been sought for decades. The existence of such neurons has been doubted recently as a result of the observation that itch-mediating neurons also respond to painful stimuli. We genetically labeled and manipulated MrgprA3+ neurons in the dorsal root ganglion (DRG) and found that they exclusively innervated the epidermis of the skin and responded to multiple pruritogens. Ablation of MrgprA3+ neurons led to substantial reductions in scratching evoked by multiple pruritogens and occurring spontaneously under chronic itch conditions, whereas pain sensitivity remained intact. Notably, mice in which TRPV1 was exclusively expressed in MrgprA3+ neurons exhibited itch, but not pain, behavior in response to capsaicin. Although MrgprA3+ neurons were sensitive to noxious heat, activation of TRPV1 in these neurons by noxious heat did not alter pain behavior. These data suggest that MrgprA3 defines a specific subpopulation of DRG neurons mediating itch. Our study opens new avenues for studying itch and developing anti-pruritic therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generation of the Mrgpra3GFP-Cre transgenic mouse line.
Figure 2: Characterization of MrgprA3+ neurons.
Figure 3: MrgprA3+ DRG neurons form synaptic connections with GRPR+ neurons in the dorsal spinal cord.
Figure 4: MrgprA3+ neurons have polymodal nociceptors with C fibers and respond to multiple pruritogens.
Figure 5: The ablation of MrgprA3+ neurons.
Figure 6: Specific activation of MrgprA3+ neurons.
Figure 7: Specific activation of MrgprA3+ neurons evokes robust scratching and little or no pain response.


  1. 1

    Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Schmelz, M., Schmidt, R., Bickel, A., Handwerker, H.O. & Torebjork, H.E. Specific C-receptors for itch in human skin. J. Neurosci. 17, 8003–8008 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Schmelz, M. et al. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J. Neurophysiol. 89, 2441–2448 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Johanek, L.M. et al. A role for polymodal C-fiber afferents in nonhistaminergic itch. J. Neurosci. 28, 7659–7669 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Namer, B. et al. Separate peripheral pathways for pruritus in man. J. Neurophysiol. 100, 2062–2069 (2008).

    Article  Google Scholar 

  7. 7

    Akiyama, T., Carstens, M.I. & Carstens, E. Facial injections of pruritogens and algogens excite partly overlapping populations of primary and second-order trigeminal neurons in mice. J. Neurophysiol. 104, 2442–2450 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Ma, C., Nie, H., Gu, Q., Sikand, P. & LaMotte, R.H. In vivo responses of cutaneous C-mechanosensitive neurons in mouse to punctate chemical stimuli that elicit itch and nociceptive sensations in humans. J. Neurophysiol. 107, 357–363 (2012).

    CAS  Article  Google Scholar 

  9. 9

    LaMotte, R.H., Shimada, S.G., Green, B.G. & Zelterman, D. Pruritic and nociceptive sensations and dysesthesias from a spicule of cowhage. J. Neurophysiol. 101, 1430–1443 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Wilson, S.R. et al. TRPA1 is required for histamine-independent, Mas-related G protein–coupled receptor–mediated itch. Nat. Neurosci. 14, 595–602 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Liu, Q. et al. Sensory neuron–specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

    Article  Google Scholar 

  12. 12

    Sikand, P., Dong, X. & LaMotte, R.H. BAM8–22 peptide produces itch and nociceptive sensations in humans independent of histamine release. J. Neurosci. 31, 7563–7567 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Liu, Q. et al. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci. Signal. 4, ra45 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zylka, M.J., Dong, X., Southwell, A.L. & Anderson, D.J. Atypical expansion in mice of the sensory neuron–specific Mrg G protein–coupled receptor family. Proc. Natl. Acad. Sci. USA 100, 10043–10048 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Dong, X., Han, S., Zylka, M.J., Simon, M.I. & Anderson, D.J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619–632 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Zylka, M.J., Rice, F.L. & Anderson, D.J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Liu, Y. et al. Mechanisms of compartmentalized expression of Mrg class G protein–coupled sensory receptors. J. Neurosci. 28, 125–132 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Sun, Y.G. & Chen, Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448, 700–703 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Sun, Y.G. et al. Cellular basis of itch sensation. Science 325, 1531–1534 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Barth, A.L., Gerkin, R.C. & Dean, K.L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci. 24, 6466–6475 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Ma, C., Donnelly, D.F. & LaMotte, R.H. In vivo visualization and functional characterization of primary somatic neurons. J. Neurosci. Methods 191, 60–65 (2010).

    Article  Google Scholar 

  23. 23

    Shinohara, T. et al. Identification of a G protein–coupled receptor specifically responsive to beta-alanine. J. Biol. Chem. 279, 23559–23564 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Abrahamsen, B. et al. The cell and molecular basis of mechanical, cold and inflammatory pain. Science 321, 702–705 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Naglich, J.G., Metherall, J.E., Russell, D.W. & Eidels, L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Saito, M. et al. Diphtheria toxin receptor–mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Imamachi, N. et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc. Natl. Acad. Sci. USA 106, 11330–11335 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Di Nardo, A., Wertz, P., Giannetti, A. & Seidenari, S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 78, 27–30 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Krajnik, M. & Zylicz, Z. Understanding pruritus in systemic disease. J. Pain Symptom Manage. 21, 151–168 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Miyamoto, T., Nojima, H., Shinkado, T., Nakahashi, T. & Kuraishi, Y. Itch-associated response induced by experimental dry skin in mice. Jpn. J. Pharmacol. 88, 285–292 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Saint-Mezard, P. et al. Allergic contact dermatitis. Eur. J. Dermatol. 14, 284–295 (2004).

    CAS  PubMed  Google Scholar 

  33. 33

    Skoner, D.P. Allergic rhinitis: definition, epidemiology, pathophysiology, detection and diagnosis. J. Allergy Clin. Immunol. 108, S2–S8 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Ono, S.J. & Abelson, M.B. Allergic conjunctivitis: update on pathophysiology and prospects for future treatment. J. Allergy Clin. Immunol. 115, 118–122 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Shimada, S.G. & LaMotte, R.H. Behavioral differentiation between itch and pain in mouse. Pain 139, 681–687 (2008).

    Article  Google Scholar 

  36. 36

    Liu, Q. et al. Mechanisms of itch evoked by beta-alanine. J. Neurosci. 32, 14532–14537 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Arenkiel, B.R., Klein, M.E., Davison, I.G., Katz, L.C. & Ehlers, M.D. Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nat. Methods 5, 299–302 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Güler, A.D. et al. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat. Commun. 3, 746 (2012).

    Article  Google Scholar 

  39. 39

    Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Sikand, P., Shimada, S.G., Green, B.G. & LaMotte, R.H. Sensory responses to injection and punctate application of capsaicin and histamine to the skin. Pain 152, 2485–2494 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Sikand, P., Shimada, S.G., Green, B.G. & LaMotte, R.H. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage. Pain 144, 66–75 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Green, B.G. Spatial summation of chemical irritation and itch produced by topical application of capsaicin. Percept. Psychophys. 48, 12–18 (1990).

    CAS  Article  Google Scholar 

  43. 43

    McQueen, D.S., Noble, M.A. & Bond, S.M. Endothelin-1 activates ETA receptors to cause reflex scratching in BALB/c mice. Br. J. Pharmacol. 151, 278–284 (2007).

    CAS  Article  Google Scholar 

  44. 44

    Yamaguchi, T., Nagasawa, T., Satoh, M. & Kuraishi, Y. Itch-associated response induced by intradermal serotonin through 5-HT2 receptors in mice. Neurosci. Res. 35, 77–83 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Finger, S. & Wade, N.J. The neuroscience of Helmholtz and the theories of Johannes Muller. Part 2. Sensation and perception. J. Hist. Neurosci. 11, 234–254 (2002).

    Article  Google Scholar 

  46. 46

    McMahon, S.B. & Koltzenburg, M. Itching for an explanation. Trends Neurosci. 15, 497–501 (1992).

    CAS  Article  Google Scholar 

  47. 47

    Lagerström, M.C. et al. VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68, 529–542 (2010).

    Article  Google Scholar 

  48. 48

    Ross, S.E. et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65, 886–898 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Liu, Y. et al. VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68, 543–556 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Davidson, S. & Giesler, G.J. The multiple pathways for itch and their interactions with pain. Trends Neurosci. 33, 550–558 (2010).

    CAS  Article  Google Scholar 

Download references


We thank C. Hawkins and the staff of Transgenic Mouse Core at Johns Hopkins University School of Medicine for assistance with BAC transgenic mouse generation. We thank D. Anderson (California Institute of Technology) and M. Zylka (University of North Carolina at Chapel Hill) for providing MrgprdGFP/+ mice and A. Guler (University of Washington) for providing Rosa26Trpv1 mice. The work was supported by grants from the US National Institutes of Health to X.D. (NS054791 and GM087369), R.L. (NS047399 and NS014624) and Y.G. (NS070814). X.D. is an Early Career Scientist of the Howard Hughes Medical Institute.

Author information




L.H. generated the Mrgpra3GFP-Cre mice, carried out the genetic manipulation and most of the behavioral, immunostaining and Ca2+ imaging experiments, and wrote the manuscript. C.M., H.N. and L.Q. conducted in vivo DRG recordings. Q.L., H.-J.W. and K.N.P. contributed to behavioral experiments. Y.C. and B.X. made the MrgprA3-Cre BAC construct. Z.T., Y.K. and Z.L. conducted in vitro DRG recordings. B.M., S.H. and Y.G. contributed to immunostaining experiments. R.L. and X.D. supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Robert H LaMotte or Xinzhong Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 1096 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, L., Ma, C., Liu, Q. et al. A subpopulation of nociceptors specifically linked to itch. Nat Neurosci 16, 174–182 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing