Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain

Abstract

Midbrain dopaminergic (DA) neurons are thought to guide learning via phasic elevations of firing in response to reward predicting stimuli. The mechanism for these signals remains unclear. Using extracellular recording during associative learning, we found that inhibitory neurons in the ventral midbrain of mice responded to salient auditory stimuli with a burst of activity that occurred before the onset of the phasic response of DA neurons. This population of inhibitory neurons exhibited enhanced responses during extinction and was anticorrelated with the phasic response of simultaneously recorded DA neurons. Optogenetic stimulation revealed that this population was, in part, derived from inhibitory projection neurons of the substantia nigra that provide a robust monosynaptic inhibition of DA neurons. Thus, our results elaborate on the dynamic upstream circuits that shape the phasic activity of DA neurons and suggest that the inhibitory microcircuit of the midbrain is critical for new learning in extinction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discrete timing of sensory responses in the ventral midbrain during auditory trace conditioning.
Figure 2: Short-latency responses to the conditioned stimulus are enhanced during extinction.
Figure 3: The population response during extinction.
Figure 4: Opposing extinction signals emerge with similar time courses.
Figure 5: Light-evoked activity in ChR2-expressing GABAergic neurons, but not DA neurons in vitro.
Figure 6: Optogenetic tagging reveals that short-latency auditory responses are from GABAergic neurons.
Figure 7: The microcircuit of the SN is spatially extended and is sufficient to suppress the firing of DA neurons.

References

  1. Schultz, W. Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol. 7, 191–197 (1997).

    Article  CAS  Google Scholar 

  2. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  Google Scholar 

  3. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  Google Scholar 

  4. Mirenowicz, J. & Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451 (1996).

    Article  CAS  Google Scholar 

  5. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

    Article  CAS  Google Scholar 

  6. Roesch, M.R., Calu, D.J. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci. 10, 1615–1624 (2007).

    Article  CAS  Google Scholar 

  7. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  CAS  Google Scholar 

  8. Tobler, P.N., Dickinson, A. & Schultz, W. Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J. Neurosci. 23, 10402–10410 (2003).

    Article  CAS  Google Scholar 

  9. Pan, W.-X., Schmidt, R., Wickens, J.R. & Hyland, B.I. Tripartite mechanism of extinction suggested by dopamine neuron activity and temporal difference model. J. Neurosci. 28, 9619–9631 (2008).

    Article  CAS  Google Scholar 

  10. Pan, W.-X., Schmidt, R., Wickens, J.R. & Hyland, B.I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci. 25, 6235–6242 (2005).

    Article  CAS  Google Scholar 

  11. Schultz, W. The phasic reward signal of primate dopamine neurons. Adv. Pharmacol. 42, 686–690 (1998).

    Article  CAS  Google Scholar 

  12. Stuber, G.D. et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321, 1690–1692 (2008).

    Article  CAS  Google Scholar 

  13. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  Google Scholar 

  14. Hong, S., Jhou, T.C., Smith, M., Saleem, K.S. & Hikosaka, O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31, 11457–11471 (2011).

    Article  CAS  Google Scholar 

  15. Grace, A.A., Floresco, S.B., Goto, Y. & Lodge, D.J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227 (2007).

    Article  CAS  Google Scholar 

  16. Brazhnik, E., Shah, F. & Tepper, J.M. GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. J. Neurosci. 28, 10386–10398 (2008).

    Article  CAS  Google Scholar 

  17. Tepper, J.M. & Lee, C.R. GABAergic control of substantia nigra dopaminergic neurons. Prog. Brain Res. 160, 189–208 (2007).

    Article  CAS  Google Scholar 

  18. Tepper, J.M., Martin, L.P. & Anderson, D.R. GABAA receptor–mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J. Neurosci. 15, 3092–3103 (1995).

    Article  CAS  Google Scholar 

  19. Pan, W.-X. & Hyland, B.I. Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci. 25, 4725–4732 (2005).

    Article  CAS  Google Scholar 

  20. Redgrave, P. & Gurney, K. The short-latency dopamine signal: a role in discovering novel actions? Nat. Rev. Neurosci. 7, 967–975 (2006).

    Article  CAS  Google Scholar 

  21. Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons. Neuron 67, 144–155 (2010).

    Article  CAS  Google Scholar 

  22. Deniau, J.M., Mailly, P., Maurice, N. & Charpier, S. The pars reticulata of the substantia nigra: a window to basal ganglia output. Prog. Brain Res. 160, 151–172 (2007).

    Article  CAS  Google Scholar 

  23. Fan, D., Rossi, M.A. & Yin, H.H. Mechanisms of action selection and timing in substantia nigra neurons. J. Neurosci. 32, 5534–5548 (2012).

    Article  CAS  Google Scholar 

  24. Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B. & Uchida, N. Neuron type–specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  CAS  Google Scholar 

  25. Gulley, J.M., Kosobud, A.E.K. & Rebec, G.V. Behavior-related modulation of substantia nigra pars reticulata neurons in rats performing a conditioned reinforcement task. Neuroscience 111, 337–349 (2002).

    Article  CAS  Google Scholar 

  26. Bryden, D.W., Johnson, E.E., Diao, X. & Roesch, M.R. Impact of expected value on neural activity in rat substantia nigra pars reticulata. Eur. J. Neurosci. 33, 2308–2317 (2011).

    Article  Google Scholar 

  27. Parker, J.G. et al. Absence of NMDA receptors in dopamine neurons attenuates dopamine release, but not conditioned approach, during Pavlovian conditioning. Proc. Natl. Acad. Sci. USA 107, 13491–13496 (2010).

    Article  CAS  Google Scholar 

  28. Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    Article  CAS  Google Scholar 

  29. Nair-Roberts, R.G. et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152, 1024–1031 (2008).

    Article  CAS  Google Scholar 

  30. Jin, X. & Costa, R.M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    Article  CAS  Google Scholar 

  31. Bayer, H.M., Lau, B. & Glimcher, P.W. Statistics of midbrain dopamine neuron spike trains in the awake primate. J. Neurophysiol. 98, 1428–1439 (2007).

    Article  Google Scholar 

  32. Paxinos, G. The Rat Nervous System, 3rd edn. (Elsevier, 2004).

  33. Kolomiets, B.P. et al. Segregation and convergence of information flow through the cortico-subthalamic pathways. J. Neurosci. 21, 5764–5772 (2001).

    Article  CAS  Google Scholar 

  34. Winer, J. & Schreiner, C. The Inferior Colliculus (Springer, 2005).

  35. Coizet, V. et al. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci. 29, 5701–5709 (2009).

    Article  CAS  Google Scholar 

  36. Bevan, M.D. & Bolam, J.P. Cholinergic, GABAergic and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J. Neurosci. 15, 7105–7120 (1995).

    Article  CAS  Google Scholar 

  37. Condé, H., Dormont, J.F. & Farin, D. The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. II. Effects of reversible inactivation by intracerebral microinjections. Exp. Brain Res. 121, 411–418 (1998).

    Article  Google Scholar 

  38. Yu, L., Stein, B.E. & Rowland, B.A. Adult plasticity in multisensory neurons: short-term experience-dependent changes in the superior colliculus. J. Neurosci. 29, 15910–15922 (2009).

    Article  CAS  Google Scholar 

  39. Schultz, W. Behavioral dopamine signals. Trends Neurosci. 30, 203–210 (2007).

    Article  CAS  Google Scholar 

  40. Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  Google Scholar 

  41. Balcita-Pedicino, J.J., Omelchenko, N., Bell, R. & Sesack, S.R. The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J. Comp. Neurol. 519, 1143–1164 (2011).

    Article  CAS  Google Scholar 

  42. Cebrián, C., Parent, A. & Prensa, L. Patterns of axonal branching of neurons of the substantia nigra pars reticulata and pars lateralis in the rat. J. Comp. Neurol. 492, 349–369 (2005).

    Article  Google Scholar 

  43. Dommett, E. et al. How visual stimuli activate dopaminergic neurons at short latency. Science 307, 1476–1479 (2005).

    Article  CAS  Google Scholar 

  44. Inglis, W.L. & Winn, P. The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog. Neurobiol. 47, 1–29 (1995).

    Article  CAS  Google Scholar 

  45. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    Article  CAS  Google Scholar 

  46. Pavlov, I. Conditioned Reflexes: an Investigation of the Physiological Activity of the Cerebral Cortex (Oxford University Press, 1927).

  47. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  48. Gutkin, B.S. & Ermentrout, G.B. Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput. 10, 1047–1065 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Paton, W. Denk, A. Karpova, A. Lee, J. Magee and G. Murphy provided critical feedback at various stages of preparation of the manuscript and progression of the project. We are indebted to the extensive feedback from our colleagues following presentation of this work at internal seminars on the Janelia Farm Research Campus. We thank members of our laboratory for critical reading and feedback on the manuscript. J.B. receives funding from the Cambridge-Janelia Farm Graduate Program. This work was supported by funding from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

W.-X.P. and J.T.D. designed the project. J.T.D., W.-X.P. and J.B. analyzed the data and wrote the manuscript. W.-X.P. performed the in vivo recording and behavioral experiments. J.B. performed the in vitro experiments. J.T.D. implemented the computational model and performed a minority of the experiments.

Corresponding author

Correspondence to Joshua Tate Dudman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 5616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, WX., Brown, J. & Dudman, J. Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain. Nat Neurosci 16, 71–78 (2013). https://doi.org/10.1038/nn.3283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing