Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a dopamine pathway that regulates sleep and arousal in Drosophila

Abstract

Sleep is required to maintain physiological functions, including memory, and is regulated by monoamines across species. Enhancement of dopamine signals by a mutation in the dopamine transporter (DAT) decreases sleep, but the underlying dopamine circuit responsible for this remains unknown. We found that the D1 dopamine receptor (DA1) in the dorsal fan-shaped body (dFSB) mediates the arousal effect of dopamine in Drosophila. The short sleep phenotype of the DAT mutant was completely rescued by an additional mutation in the DA1 (also known as DopR) gene, but expression of wild-type DA1 in the dFSB restored the short sleep phenotype. We found anatomical and physiological connections between dopamine neurons and the dFSB neuron. Finally, we used mosaic analysis with a repressive marker and found that a single dopamine neuron projecting to the FSB activated arousal. These results suggest that a local dopamine pathway regulates sleep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DA1 mediates the wake-promoting effects of dopamine.
Figure 2: DA1 in the FSB, but not in the mushroom body, mediates the wake-promoting effects of dopamine.
Figure 3: Activation of the dFSB induces sleep in control and DATfmn flies.
Figure 4: Ablation of PDF neurons does not eliminate the arousal effect of dopamine.
Figure 5: The FSB neuron is anatomically connected to a dopamine neuron.
Figure 6: The FSB neurons show a response to dopamine.
Figure 7: The activation of dopamine neurons by TrpA1 resulted in a reduction in sleep.
Figure 8: Activation of an FSB-projecting PPM3 dopamine neuron was sufficient to decrease sleep.

Similar content being viewed by others

References

  1. Crocker, A., Shahidullah, M., Levitan, I.B. & Sehgal, A. Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65, 670–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kohatsu, S., Koganezawa, M. & Yamamoto, D. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69, 498–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Agosto, J. et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat. Neurosci. 11, 354–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol. 15, 1165–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kume, K., Kume, S., Park, S.K., Hirsh, J. & Jackson, F.R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan, Q., Joiner, W.J. & Sehgal, A. A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr. Biol. 16, 1051–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kume, K.A Drosophila dopamine transporter mutant, fumin (fmn), is defective in arousal regulation. Sleep Biol. Rhythms 4, 263–273 (2006).

    Article  Google Scholar 

  10. Ueno, T., Masuda, N., Kume, S. & Kume, K. Dopamine modulates the rest period length without perturbation of its power law distribution in Drosophila melanogaster. PLoS ONE 7, e32007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ueno, T., Tomita, J., Kume, S. & Kume, K. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster. PLoS ONE 7, e31513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wisor, J.P. et al. Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21, 1787–1794 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shang, Y. et al. Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat. Neurosci. 14, 889–895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lebestky, T. et al. Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64, 522–536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Draper, I., Kurshan, P.T., McBride, E., Jackson, F.R. & Kopin, A.S. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev. Neurobiol. 67, 378–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Andretic, R., Kim, Y.C., Jones, F.S., Han, K.A. & Greenspan, R.J. Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc. Natl. Acad. Sci. USA 105, 20392–20397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kong, E.C. et al. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS ONE 5, e9954 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Van Swinderen, B. & Andretic, R. Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc. Biol. Sci. 278, 906–913 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. Waddell, S. Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci. 33, 457–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aso, Y. et al. Specific dopaminergic neurons for the formation of labile aversive memory. Curr. Biol. 20, 1445–1451 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Claridge-Chang, A. et al. Writing memories with light-addressable reinforcement circuitry. Cell 139, 405–415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, C. et al. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488, 512–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Tomita, J. et al. Pan-neuronal knockdown of calcineurin reduces sleep in the fruit fly, Drosophila melanogaster. J. Neurosci. 31, 13137–13146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, X., Yu, F. & Guo, A. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep 32, 1417–1424 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim, Y.C., Lee, H.G. & Han, K.A. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. Neurosci. 27, 7640–7647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Young, J.M. & Armstrong, J.D. Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J. Comp. Neurol. 518, 1500–1524 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, G. et al. Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Sugamori, K.S., Demchyshyn, L.L., McConkey, F., Forte, M.A. & Niznik, H.B. A primordial dopamine D1-like adenylyl cyclase–linked receptor from Drosophila melanogaster displaying poor affinity for benzazepines. FEBS Lett. 362, 131–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Connolly, J.B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Donlea, J.M., Thimgan, M.S., Suzuki, Y., Gottschalk, L. & Shaw, P.J. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332, 1571–1576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feinberg, E.H. et al. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gordon, M.D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lai, S.L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Shinomiya, K., Matsuda, K., Oishi, T., Otsuna, H. & Ito, K. Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons. J. Comp. Neurol. 519, 807–833 (2011).

    Article  PubMed  Google Scholar 

  38. Friggi-Grelin, F. et al. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54, 618–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Shafer, O.T. et al. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58, 223–237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Mao, Z. & Davis, R.L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang, S., Yin, Y., Lu, H. & Guo, A. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila. Biochem. Biophys. Res. Commun. 370, 82–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bushey, D., Huber, R., Tononi, G. & Cirelli, C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J. Neurosci. 27, 5384–5393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seugnet, L., Suzuki, Y., Vine, L., Gottschalk, L. & Shaw, P.J. D1 receptor activation in the mushroom bodies rescues sleep loss–induced learning impairments in Drosophila. Curr. Biol. 18, 1110–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Donlea, J.M., Ramanan, N. & Shaw, P.J. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324, 105–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilestro, G.F., Tononi, G. & Cirelli, C. Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324, 109–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bushey, D., Tononi, G. & Cirelli, C. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332, 1576–1581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan, Y. et al. Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn. Mem. 16, 289–295 (2009).

    Article  PubMed  Google Scholar 

  49. Neve, K.A., Seamans, J.K. & Trantham-Davidson, H. Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 24, 165–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, N. & Lee, D. Suppression of excitatory cholinergic synaptic transmission by Drosophila dopamine D1-like receptors. Eur. J. Neurosci. 26, 2417–2427 (2007).

    Article  PubMed  Google Scholar 

  51. Hamada, F.N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tully, T. & Quinn, W.G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157, 263–277 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Wu and Q. Liu for sharing unpublished results, K. Ueno, T. Sakai and S. Sato for encouraging advice, M. Yamazaki, A. Miyoshi, Y. Kawahara and W. Honghang for technical assistance, F.W. Wolf for the kind gift of an antibody, R. Jackson and the members of Kume laboratory for discussion and critical reading of the manuscript, and P. Garrity, D. Armstrong, J. Hirsh, K. Scott, the Kyoto Drosophila Genetic Resource Center and the Bloomington Stock Center for fly stocks. This work was supported by a grant (22300132) from the Japanese Society for the Promotion of Science (JSPS). T.U. is a JSPS fellow. S.K. is a member of the Global COE Program (Cell Fate Regulation Research and Education Unit).

Author information

Authors and Affiliations

Authors

Contributions

T.U. and K.K. designed the study. T.U. performed the experiments and data analysis. J.T., H.T., K.E. and K.I. contributed unpublished reagents. H.T., S.K. and K.K. directed the study. T.U., J.T., H.T., K.E., K.I., S.K. and K.K. wrote the manuscript.

Corresponding author

Correspondence to Kazuhiko Kume.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 3371 kb)

Supplementary Video 1

This file contains a movie showing labeling of 104y-GAL4 and Nv131-LexA in the central brain in reference to Figure 5a. Green indicates CD2::GFP driven by Nv131-LexA. Magenta indicates mCD8::RFP driven by 104y-GAL4. (AVI 2156 kb)

Supplementary Video 2

This file contains a movie showing labeling of Nv131-LexA with anti-TH immunostaining in reference to Figure 5b. Green indicates CD2::GFP driven by Nv131-LexA. Magenta indicates immunostaining of dopamine neurons with the anti-TH antibody. (MOV 1766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, T., Tomita, J., Tanimoto, H. et al. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci 15, 1516–1523 (2012). https://doi.org/10.1038/nn.3238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing