Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization

Abstract

Cocaine-induced alterations in synaptic glutamate function in nucleus accumbens are thought to mediate drug-related behaviors such as psychomotor sensitization. However, previous studies have examined global alterations in randomly selected accumbens neurons regardless of their activation state during cocaine-induced behavior. We recently found that a minority of strongly activated Fos-expressing accumbens neurons are necessary for cocaine-induced psychomotor sensitization, whereas the majority of accumbens neurons are less directly involved. We assessed synaptic alterations in these strongly activated accumbens neurons in Fos-GFP mice, which express a fusion protein of Fos and GFP in strongly activated neurons, and compared these alterations with those in surrounding non-activated neurons. Cocaine sensitization produced higher levels of 'silent synapses', which contained functional NMDA receptors and nonfunctional AMPA receptors only in GFP-positive neurons, 6–11 d after sensitization. Thus, distinct synaptic alterations are induced in the most strongly activated accumbens neurons that mediate psychomotor sensitization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine-induced GFP expression in nucleus accumbens.
Figure 2: Synaptic strength in activated nucleus accumbens neurons.
Figure 3: AMPAR subunit composition does not differ between GFP+ or GFP neurons following cocaine test injections in repeated or acute cocaine mice.
Figure 4: Effects of bath-applied AMPA on GFP+ and GFP accumbens neurons following cocaine test injections in repeated cocaine and acute cocaine mice.
Figure 5: Quantal sEPSC properties in GFP+ and GFP accumbens neurons following cocaine test injections in repeated cocaine (GFP+, n = 21 cells from 15 mice; GFP, n = 20 cells from 16 mice) and acute cocaine mice (GFP+, n = 24 cells from 15 mice; GFP, n = 27 cells from 11 mice).
Figure 6: Higher levels of silent synapses were found on GFP+ neurons than on GFP neurons following cocaine test injections in repeated cocaine, but not in acute cocaine mice.
Figure 7: The proportion of silent synapses from a randomly selected population of accumbens neurons, following 1–2-d or 6–11-d withdrawal from 3–5 d of repeated cocaine injections.
Figure 8: Silent synapses in GFP+ neurons from repeated cocaine mice (that is, mice challenged with cocaine following 6–11 d of withdrawal from repeated cocaine) were not associated with alterations in NR2B expression.

Similar content being viewed by others

References

  1. Thomas, M.J., Kalivas, P.W. & Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol. 154, 327–342 (2008).

    Article  CAS  Google Scholar 

  2. Bowers, M.S., Chen, B.T. & Bonci, A. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present and therapeutic future. Neuron 67, 11–24 (2010).

    Article  CAS  Google Scholar 

  3. Wolf, M.E. & Ferrario, C.R. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci. Biobehav. Rev. 35, 185–211 (2010).

    Article  CAS  Google Scholar 

  4. Huang, Y.H., Schluter, O.M. & Dong, Y. Cocaine-induced homeostatic regulation and dysregulation of nucleus accumbens neurons. Behav. Brain Res. 216, 9–18 (2011).

    Article  CAS  Google Scholar 

  5. Everitt, B.J., Dickinson, A. & Robbins, T.W. The neuropsychological basis of addictive behaviour. Brain Res. Brain Res. Rev. 36, 129–138 (2001).

    Article  CAS  Google Scholar 

  6. Wise, R.A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    Article  CAS  Google Scholar 

  7. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).

    Article  CAS  Google Scholar 

  8. Kourrich, S., Rothwell, P.E., Klug, J.R. & Thomas, M.J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).

    Article  CAS  Google Scholar 

  9. Saal, D., Dong, Y., Bonci, A. & Malenka, R.C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003).

    Article  CAS  Google Scholar 

  10. Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217–1223 (2001).

    Article  CAS  Google Scholar 

  11. Ungless, M.A., Whistler, J.L., Malenka, R.C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).

    Article  CAS  Google Scholar 

  12. Mameli, M., Bellone, C., Brown, M.T. & Luscher, C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat. Neurosci. 14, 414–416 (2011).

    Article  CAS  Google Scholar 

  13. Mameli, M. et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci. 12, 1036–1041 (2009).

    Article  CAS  Google Scholar 

  14. Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  Google Scholar 

  15. Argilli, E., Sibley, D.R., Malenka, R.C., England, P.M. & Bonci, A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J. Neurosci. 28, 9092–9100 (2008).

    Article  CAS  Google Scholar 

  16. Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24, 6939–6945 (2004).

    Article  CAS  Google Scholar 

  17. Huang, C.C. et al. Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens. J. Neurosci. 31, 4194–4203 (2011).

    Article  CAS  Google Scholar 

  18. Koya, E. et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat. Neurosci. 12, 1069–1073 (2009).

    Article  CAS  Google Scholar 

  19. Barth, A.L., Gerkin, R.C. & Dean, K.L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci. 24, 6466–6475 (2004).

    Article  CAS  Google Scholar 

  20. Wu, L.J., Kim, S.S., Li, X., Zhang, F. & Zhuo, M. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex. Mol. Brain 2, 9 (2009).

    Article  Google Scholar 

  21. Hope, B.T., Simmons, D.E., Mitchell, T.B., Kreuter, J.D. & Mattson, B.J. Cocaine-induced locomotor activity and Fos expression in nucleus accumbens are sensitized for 6 months after repeated cocaine administration outside the home cage. Eur. J. Neurosci. 24, 867–875 (2006).

    Article  Google Scholar 

  22. Crombag, H.S., Jedynak, J.P., Redmond, K., Robinson, T.E. & Hope, B.T. Locomotor sensitization to cocaine is associated with increased Fos expression in the accumbens, but not in the caudate. Behav. Brain Res. 136, 455–462 (2002).

    Article  CAS  Google Scholar 

  23. Matamales, M. et al. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS ONE 4, e4770 (2009).

    Article  Google Scholar 

  24. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006).

    Article  CAS  Google Scholar 

  25. Good, C.H. & Lupica, C.R. Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs. J. Neurosci. 30, 7900–7909 (2010).

    Article  CAS  Google Scholar 

  26. Isaac, J.T., Nicoll, R.A. & Malenka, R.C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    Article  CAS  Google Scholar 

  27. Liao, D., Hessler, N.A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  Google Scholar 

  28. Rumpel, S., Hatt, H. & Gottmann, K. Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. 18, 8863–8874 (1998).

    Article  CAS  Google Scholar 

  29. Brown, T.E. et al. A silent synapse–based mechanism for cocaine-induced locomotor sensitization. J. Neurosci. 31, 8163–8174 (2011).

    Article  CAS  Google Scholar 

  30. Huang, Y.H. et al. In vivo cocaine experience generates silent synapses. Neuron 63, 40–47 (2009).

    Article  CAS  Google Scholar 

  31. Marie, H., Morishita, W., Yu, X., Calakos, N. & Malenka, R.C. Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45, 741–752 (2005).

    Article  CAS  Google Scholar 

  32. Liao, D. & Malinow, R. Deficiency in induction, but not expression, of LTP in hippocampal slices from young rats. Learn. Mem. 3, 138–149 (1996).

    Article  CAS  Google Scholar 

  33. Fischer, G. et al. Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J. Pharmacol. Exp. Ther. 283, 1285–1292 (1997).

    CAS  Google Scholar 

  34. Cull-Candy, S.G. & Leszkiewicz, D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, re16 (2004).

    PubMed  Google Scholar 

  35. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Article  CAS  Google Scholar 

  36. Barria, A. & Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289–301 (2005).

    Article  CAS  Google Scholar 

  37. Anagnostaras, S.G. & Robinson, T.E. Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav. Neurosci. 110, 1397–1414 (1996).

    Article  CAS  Google Scholar 

  38. Mattson, B.J. et al. Context-specific sensitization of cocaine-induced locomotor activity and associated neuronal ensembles in rat nucleus accumbens. Eur. J. Neurosci. 27, 202–212 (2008).

    Article  Google Scholar 

  39. Bertran-Gonzalez, J. et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor–expressing striatal neurons in response to cocaine and haloperidol. J. Neurosci. 28, 5671–5685 (2008).

    Article  CAS  Google Scholar 

  40. Kerchner, G.A. & Nicoll, R.A. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9, 813–825 (2008).

    Article  CAS  Google Scholar 

  41. Sametsky, E.A., Disterhoft, J.F., Geinisman, Y. & Nicholson, D.A. Synaptic strength and postsynaptically silent synapses through advanced aging in rat hippocampal CA1 pyramidal neurons. Neurobiol. Aging 31, 813–825 (2010).

    Article  Google Scholar 

  42. Uslaner, J. et al. Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neurosci. 13, 1977–1983 (2001).

    Article  CAS  Google Scholar 

  43. Boudreau, A.C., Reimers, J.M., Milovanovic, M. & Wolf, M.E. Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J. Neurosci. 27, 10621–10635 (2007).

    Article  CAS  Google Scholar 

  44. Boudreau, A.C. & Wolf, M.E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci. 25, 9144–9151 (2005).

    Article  CAS  Google Scholar 

  45. Lee, B.R. & Dong, Y. Cocaine-induced metaplasticity in the nucleus accumbens: silent synapse and beyond. Neuropharmacology 61, 1060–1069 (2011).

    Article  CAS  Google Scholar 

  46. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  47. Reiner, A., Perera, M., Paullus, R. & Medina, L. Immunohistochemical localization of DARPP32 in striatal projection neurons and striatal interneurons in pigeons. J. Chem. Neuroanat. 16, 17–33 (1998).

    Article  CAS  Google Scholar 

  48. Paxinos, G & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, 2001).

  49. Kullmann, D.M. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron 12, 1111–1120 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Barth for providing the first line of Fos-GFP mice, K. Knestaut and J. Hug for breeding the Fos-GFP mice, and E. Goldart and R. Ator for genotyping assistance. We thank S. Hall and T. Shippenberg for the use of their locomotor activity chambers. We thank S. Kourrich for many fruitful discussions regarding synaptic plasticity in the nucleus accumbens. This research was supported by the National Institute on Drug Abuse, Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

E.K., F.C.C. and B.T.H. designed the behavioral experiments. E.K. performed these experiments with F.C.C., R.A., S.A.G. and B.T.H. E.K., A.F.H. and C.R.L. designed the electrophysiology experiments. C.R.L. designed and built the spinning disc confocal and electrophysiology apparatuses. E.K. conducted and analyzed the data from the behavior, immunohistochemistry and electrophysiology experiments. E.K., B.T.H. and C.R.L. wrote the paper.

Corresponding author

Correspondence to Bruce T Hope.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koya, E., Cruz, F., Ator, R. et al. Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization. Nat Neurosci 15, 1556–1562 (2012). https://doi.org/10.1038/nn.3232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing