Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

More is not always better: adaptive gain control explains dissociation between perception and action

Abstract

Moving objects generate motion information at different scales, which are processed in the visual system with a bank of spatiotemporal frequency channels. It is not known how the brain pools this information to reconstruct object speed and whether this pooling is generic or adaptive; that is, dependent on the behavioral task. We used rich textured motion stimuli of varying bandwidths to decipher how the human visual motion system computes object speed in different behavioral contexts. We found that, although a simple visuomotor behavior such as short-latency ocular following responses takes advantage of the full distribution of motion signals, perceptual speed discrimination is impaired for stimuli with large bandwidths. Such opposite dependencies can be explained by an adaptive gain control mechanism in which the divisive normalization pool is adjusted to meet the different constraints of perception and action.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Band-pass motion stimuli for perception and action tasks.
Figure 2: Ocular following responses to moving textures.
Figure 3: Effects of stimulus bandwidth on perceptual speed discrimination.
Figure 4: Comparing perception and eye movements.
Figure 5: Contrast gain settings for perception and action.
Figure 6: Model.
Figure 7: Comparison between experimental and model data.

References

  1. Milner, A.D. & Goodale, M.A. The Visual Brain in action 2nd edn (Oxford University Press, 2006).

  2. Cardoso-Leite, P. & Gorea, A. On the perceptual/motor dissociation: a review of concepts, theory, experimental paradigms and data interpretations. Seeing Perceiving 23, 89–151 (2010).

    Article  Google Scholar 

  3. Spering, M. & Montagnini, A. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review. Vision Res. 51, 836–852 (2011).

    Article  Google Scholar 

  4. Beutter, B.R. & Stone, L.S. Human motion perception and smooth eye movements show similar directional biases for elongated apertures. Vision Res. 38, 1273–1286 (1998).

    CAS  Article  Google Scholar 

  5. Krauzlis, R.J. & Adler, S.A. Effects of directional expectations on motion perception and pursuit eye movements. Vis. Neurosci. 18, 365–376 (2001).

    CAS  Article  Google Scholar 

  6. Churchland, A.K. et al. Directional anisotropies reveal a functional segregation of visual motion processing for perception and action. Neuron 37, 1001–1011 (2003).

    CAS  Article  Google Scholar 

  7. Spering, M., Pomplum, M. & Carrasco, M. Tracking without perceiving: a dissociation between eye movements and motion perception. Psychol. Sci. 22, 216–225 (2011).

    Article  Google Scholar 

  8. Tavassoli, A. & Ringach, D.L. When your eyes see more than you do. Curr. Biol. 20, R93–R94 (2010).

    CAS  Article  Google Scholar 

  9. Spering, M. & Gegenfurtner, K.R. Contrast and assimilation in motion perception and smooth pursuit eye movements. J. Neurophysiol. 98, 1355–1363 (2007).

    Article  Google Scholar 

  10. Ohshiro, T., Angelaki, D.E. & DeAngelis, G.C. A normalization model of multisensory integration. Nat. Neurosci. 14, 775–782 (2011).

    CAS  Article  Google Scholar 

  11. Carandini, M. & Heeger, D.J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    CAS  Article  Google Scholar 

  12. Schrater, P.R., Knill, D.C. & Simoncelli, E.P. Mechanism of visual motion detection. Nat. Neurosci. 3, 64–68 (2000).

    CAS  Article  Google Scholar 

  13. Léon, P.S., Vanzetta, I., Masson, G.S. & Perrinet, L.U. Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception. J. Neurophysiol. 107, 3217–3226 (2012).

    Article  Google Scholar 

  14. Miles, F.A., Kawano, K. & Optican, L.M. Short-latency ocular following responses of monkey I. Dependence on temporospatial properties of visual input. J. Neurophysiol. 56, 1321–1354 (1986).

    CAS  Article  Google Scholar 

  15. Gellman, R.S., Carl, J.R. & Miles, F.A. Short-latency ocular following responses in man. Vis. Neurosci. 5, 107–122 (1990).

    CAS  Article  Google Scholar 

  16. Masson, G.S. & Castet, E. Parallel motion processing for the initiation of short-latency ocular following in humans. J. Neurosci. 22, 5149–5163 (2002).

    CAS  Article  Google Scholar 

  17. Masson, G.S. & Perrinet, L.U. The behavioral receptive field underlying motion integration for primate tracking eye movements. Neurosci. Biobehav. Rev. 36, 1–25 (2012).

    Article  Google Scholar 

  18. Britten, K.H. et al. Responses of neurons in macaque MT to stochastic motion signal. Vis. Neurosci. 10, 1157–1169 (1993).

    CAS  Article  Google Scholar 

  19. Lisberger, S.G.L. Visual guidance of smooth-pursuit eye movements: sensation, action and what happens in between. Neuron 66, 477–491 (2010).

    CAS  Article  Google Scholar 

  20. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

  21. McKee, S.P. A local mechanism for differential velocity detection. Vision Res. 21, 491–500 (1981).

    CAS  Article  Google Scholar 

  22. Reisbeck, T.E. & Gegenfurtner, K.R. Velocity tuned mechanisms in human motion processing. Vision Res. 39, 3267–3285 (1999).

    CAS  Article  Google Scholar 

  23. Hautus, M.J. & Meng, X. Decision strategies in the ABX (matching-to-sample) psychophysical task. Percept. Psychophys. 64, 89–106 (2002).

    Article  Google Scholar 

  24. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    CAS  Article  Google Scholar 

  25. Schwartz, O. & Simoncelli, E.P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).

    CAS  Article  Google Scholar 

  26. Barthélemy, F.V. et al. Dynamics of distributed 1D and 2D motion representations for short-latency ocular following. Vision Res. 48, 501–522 (2008).

    Article  Google Scholar 

  27. Perrone, J.A. & Thiele, A. Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat. Neurosci. 4, 526–532 (2001).

    CAS  Article  Google Scholar 

  28. Priebe, N.J., Lisberger, S.G. & Movshon, J.A. Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. J. Neurosci. 26, 2941–2950 (2006).

    CAS  Article  Google Scholar 

  29. Jazayeri, M. & Movshon, J.A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    CAS  Article  Google Scholar 

  30. Jazayeri, M. & Movshon, J.A. Integration of sensory evidence in motion discrimination. J. Vis. 7, 1–7 (2007).

    Article  Google Scholar 

  31. Schenk, T., Franz, V. & Bruno, N. Vision-for-perception and vision-for-action: which model is compatible with the available psychophysical and neuropsychological data? Vision Res. 51, 812–818 (2011).

    Article  Google Scholar 

  32. Sheliga, B.M., Kodaka, Y., FitzGibbon, E.J. & Miles, F.A. Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism. Vision Res. 46, 2041–2060 (2006).

    CAS  Article  Google Scholar 

  33. Webb, B.S., Ledgeway, T. & McGraw, P.V. Relating spatial and temporal orientation pooling to population decoding in human vision. Vision Res. 50, 2274–2283 (2010).

    Article  Google Scholar 

  34. Candy, T.R., Skoczenski, A.M. & Norcia, A.M. Normalization models applied to orientation masking in the human infant. J. Neurosci. 21, 4530–4541 (2001).

    CAS  Article  Google Scholar 

  35. Rust, N.C., Mante, V., Simoncelli, E.P. & Movhson, J.A. How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9, 1421–1431 (2006).

    CAS  Article  Google Scholar 

  36. Busse, L., Wade, A.R. & Carandini, M. Representation of concurrent stimuli by population activity in visual cortex. Neuron 64, 931–942 (2009).

    CAS  Article  Google Scholar 

  37. Rust, N.C., Schwartz, O., Movshon, J.A. & Simoncelli, E.P. Spatiotemporal elements of macaque V1 receptive fields. Neuron 46, 945–956 (2005).

    CAS  Article  Google Scholar 

  38. Vinje, W.E. & Gallant, J.L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    CAS  Article  Google Scholar 

  39. Tsai, J.J., Wade, A.R. & Norcia, A.M. Dynamics of normalization underlying masking in human visual cortex. J. Neurosci. 32, 2783–2789 (2012).

    CAS  Article  Google Scholar 

  40. Chen, Y., Geisler, W.S. & Seidemann, E. Optimal decoding of correlated neural population responses in the primate visual cortex. Nat. Neurosci. 9, 1412–1420 (2006).

    CAS  Article  Google Scholar 

  41. Reynaud, A., Masson, G.S. & Chavane, F. Dynamics of local input normalization result from balanced short and long-range intra-cortical interactions in area V1. J. Neurosci. 32, 12558–12569 (2012).

    CAS  Article  Google Scholar 

  42. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    CAS  Article  Google Scholar 

  43. Cornelissen, F.W., Peters, E.M. & Palmer, J. The eyelink toolbox: eye tracking with MATLAB and the psychophysics toolbox. Behav. Res. Methods Instrum. Comput. 34, 613–617 (2002).

    Article  Google Scholar 

  44. Wichmann, F.A. & Hill, N.J. The psychometric function. I. Fitting, sampling and goodness-of-fit. Percept. Psychophys. 63, 1293–1313 (2001).

    CAS  Article  Google Scholar 

  45. Sclar, G., Maunsell, J.H. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1–10 (1990).

    CAS  Article  Google Scholar 

  46. Anderson, S.J. & Burr, D.C. Spatial and temporal selectivity of the human motion detection system. Vision Res. 25, 1147–1154 (1985).

    CAS  Article  Google Scholar 

  47. Dayan, P. & Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2001).

  48. Priebe, N.J., Cassanello, C.R. & Lisberger, S.G. The neural representation of speed in macaque Area MT/V5. J. Neurosci. 23, 5650–5661 (2003).

    CAS  Article  Google Scholar 

  49. Weiss, Y., Simoncelli, E.P. & Adelson, E.H. Motion illusions as optimal percepts. Nat. Neurosci. 5, 598–604 (2002).

    CAS  Article  Google Scholar 

  50. Priebe, N.J. & Lisberger, S.G. Estimating target speed from the population response in visual area MT. J. Neurosci. 24, 1907–1916 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Colombet, F. Barthélemy and X. DeGiovanni for their excellent technical support and A. Meso for improving the readability of the manuscript. We are grateful to Y. Frégnac, P. Cavanagh, K. Gegenfurtner, A. Movshon and T. Freeman for helpful comments and discussions in the preparation of the manuscript. This work was supported by the EU grant CODDE (VIIth Framework, Marie Curie Program, PITN-2008-214728), by the Centre National de la Recherche Scientifique and by the EU projects FACETS (VIth Framework, IST-FET-2005-15879) and BrainScales (VIth Framework, IST-FET-2011-269921).

Author information

Authors and Affiliations

Authors

Contributions

G.S.M. and P.M. directed the study. All of the authors conceived the experiments. L.U.P. designed the motion texture stimuli. C.S. and A.M. performed the experiments and data analysis. P.M. and L.U.P. designed the model. G.S.M. and P.M. wrote the paper.

Corresponding authors

Correspondence to Pascal Mamassian or Guillaume S Masson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Movie 1

Example of a dynamic random phase texture, named motion cloud, with mean spatial frequency of 0.3 cpd and small spatial frequency bandwidth (Bsf=0.025) (see Fig.1a). (MPG 1894 kb)

Supplementary Movie 2

Example of a dynamic random phase texture, named motion cloud, with mean spatial frequency of 0.3 cpd and large spatial frequency bandwidth (Bsf=0.4) (see Fig.1a). (MPG 586 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simoncini, C., Perrinet, L., Montagnini, A. et al. More is not always better: adaptive gain control explains dissociation between perception and action. Nat Neurosci 15, 1596–1603 (2012). https://doi.org/10.1038/nn.3229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3229

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing