Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning

Abstract

Most behavioral learning in biology is trial and error, but how these learning processes are influenced by individual brain systems is poorly understood. Here we show that ventral-to-dorsal hippocampal subdivisions have specific and sequential functions in trial-and-error maze navigation, with ventral hippocampus (vH) mediating early task-specific goal-oriented searching. Although performance and strategy deployment progressed continuously at the population level, individual mice showed discrete learning phases, each characterized by particular search habits. Transitions in learning phases reflected feedforward inhibitory connectivity (FFI) growth occurring sequentially in ventral, then intermediate, then dorsal hippocampal subdivisions. FFI growth at vH occurred abruptly upon behavioral learning of goal-task relationships. vH lesions or the absence of vH FFI growth delayed early learning and disrupted performance consistency. Intermediate hippocampus lesions impaired intermediate place learning, whereas dorsal hippocampus lesions specifically disrupted late spatial learning. Trial-and-error navigational learning processes in naive mice thus involve a stereotype sequence of increasingly precise subtasks learned through distinct hippocampal subdivisions. Because of its unique connectivity, vH may relate specific goals to internal states in learning under healthy and pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequential deployment of search-strategy habits during water maze learning.
Figure 2: Sequential recruitment of hippocampal subdivisions during maze learning.
Figure 3: Specific task-goal association reflected by vH FFI growth during maze learning.
Figure 4: Role of vH in water maze learning.
Figure 5: Function of iH in water maze learning.
Figure 6: Function of dH in water maze learning.
Figure 7: vH-dependent maze learning, independent of dH.

Similar content being viewed by others

References

  1. Sutton, R.S. & Barto, A.G. Reinforcement Learning: An Introduction (MIT Press, 1998).

  2. Dayan, P. & Balleine, B.W. Reward, motivation and reinforcement learning. Neuron 36, 285–298 (2002).

    Article  CAS  Google Scholar 

  3. Graybiel, A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008).

    Article  CAS  Google Scholar 

  4. Barnes, T.D., Kubota, Y., Hu, D., Jin, D.Z. & Graybiel, A.M. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437, 1158–1161 (2005).

    Article  CAS  Google Scholar 

  5. Desrochers, T.M., Jin, D.Z., Goodman, N.D. & Graybiel, A.M. Optimal habits can develop spontaneously through sensitivity to local cost. Proc. Natl. Acad. Sci. USA 107, 20512–20517 (2010).

    Article  CAS  Google Scholar 

  6. Thorn, C.A., Atallah, H., Howe, M. & Graybiel, A.M. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66, 781–795 (2010).

    Article  CAS  Google Scholar 

  7. Amemori, K., Gibb, L.G. & Graybiel, A.M. Shifting responsibility: the importance of striatal modularity to reinforcement learning in uncertain environments. Front. Hum. Neurosci. 5, 47 (2011).

    Article  Google Scholar 

  8. Botvinick, M.M., Niv, Y. & Barto, A.C. Hierarchically organized behavior and its neural foundations: a reinforcement-learning perspective. Cognition 113, 262–280 (2009).

    Article  Google Scholar 

  9. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).

  10. Moser, E.I., Kropff, E. & Moser, M.B. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    Article  CAS  Google Scholar 

  11. Bird, C.M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nat. Rev. Neurosci. 9, 182–194 (2008).

    Article  CAS  Google Scholar 

  12. Morris, R.G.M., Garrud, P., Rawlins, J.N.P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  Google Scholar 

  13. Moser, M.B. & Moser, E.I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 (1998).

    Article  CAS  Google Scholar 

  14. Dong, H.W., Swanson, L.W., Chen, L., Fanselow, M.S. & Toga, A.W. Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc. Natl. Acad. Sci. USA 106, 11794–11799 (2009).

    Article  CAS  Google Scholar 

  15. Fanselow, M.S. & Dong, H.-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    Article  CAS  Google Scholar 

  16. Moser, M.B., Moser, E.I., Forrest, E., Andersen, P. & Morris, R.G.M. Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. USA 92, 9697–9701 (1995).

    Article  CAS  Google Scholar 

  17. Thompson, C.L. et al. Genomic anatomy of the hippocampus. Neuron 60, 1010–1021 (2008).

    Article  CAS  Google Scholar 

  18. Viard, A., Doeller, C.F., Hartley, T., Bird, C.M. & Burgess, N. Anterior hippocampus and goal-directed spatial decision making. J. Neurosci. 31, 4613–4621 (2011).

    Article  CAS  Google Scholar 

  19. Royer, S., Sirota, A., Patel, J. & Buzsaki, G. Distinct representations and theta dynamics in dorsal and ventral hippocampus. J. Neurosci. 30, 1777–1787 (2010).

    Article  CAS  Google Scholar 

  20. Young, J.J. & Shapiro, M.L. Dynamic coding of goal-directed paths by orbital prefrontal cortex. J. Neurosci. 31, 5989–6000 (2011).

    Article  CAS  Google Scholar 

  21. Pennartz, C.M., Ito, R., Verschure, P.F., Battaglia, F.P. & Robbins, T.W. The hippocampal-striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci. 34, 548–559 (2011).

    Article  CAS  Google Scholar 

  22. Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011).

    Article  CAS  Google Scholar 

  23. Bednarek, E. & Caroni, P. β-adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment. Neuron 69, 1132–1146 (2011).

    Article  CAS  Google Scholar 

  24. Morris, R. Development of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  25. Wolfer, D.P. & Lipp, H.P. Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp. Physiol. 85, 627–634 (2000).

    Article  CAS  Google Scholar 

  26. Janus, C. Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn. Mem. 11, 337–346 (2004).

    Article  Google Scholar 

  27. Garthe, A., Behr, J. & Kempermann, G. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4, e5464 (2009).

    Article  Google Scholar 

  28. Luo, A.H., Tahsili-Fahadan, P., Wise, R.A., Lupica, C.R. & Aston-Jones, G. Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333, 353–357 (2011).

    Article  CAS  Google Scholar 

  29. Wiltgen, B.J. et al. The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr. Biol. 20, 1336–1344 (2010).

    Article  CAS  Google Scholar 

  30. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  Google Scholar 

  31. Bethus, I., Tse, D. & Morris, R.G.M. Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J. Neurosci. 30, 1610–1618 (2010).

    Article  CAS  Google Scholar 

  32. Rabenstein, R.L. et al. Impaired synaptic plasticity and learning in mice lacking β-adducin, an actin-regulating protein. J. Neurosci. 25, 2138–2145 (2005).

    Article  CAS  Google Scholar 

  33. Bast, T., Wilson, I.A., Witter, M.P. & Morris, R.G.M. From rapid place learning to behavioral performance: a key role for intermediate hippocampus. PLoS Biol. 7, e1000089 (2009).

    Article  Google Scholar 

  34. Bannerman, D.M., Good, M.A., Butcher, S.P., Ramsay, M. & Morris, R.G.M. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378, 182–186 (1995).

    Article  CAS  Google Scholar 

  35. Hoh, T., Beiko, J., Boon, S., Weiss, S. & Cain, D.P. Complex behavioral strategy and reversal learning in the water maze without NMDA receptor-dependent long-term potentiation. J. Neurosci. 19, RC2 (1999).

    Article  CAS  Google Scholar 

  36. Gallistel, C.R., Fairhust, S. & Balsam, P. The learning curve: implications of a quantitative analysis. Proc. Natl. Acad. Sci. USA 101, 13124–13131 (2004).

    Article  CAS  Google Scholar 

  37. Kjelstrup, K.G. et al. Reduced fear expression after lesions of the ventral hippocampus. Proc. Natl. Acad. Sci. USA 99, 10825–10830 (2002).

    Article  CAS  Google Scholar 

  38. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Sacchetti (University of Torino), C. Sandi (École Polytechnique Fédérale de Lausanne) and S. Arber (Friedrich Miescher Institut) for comments on the manuscript. The Friedrich Miescher Institut is part of the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.R. devised and carried out the analysis of hippocampal behavior, connectivity, vH lesions and β-adducin rescue; D.S. carried out the analysis of FFI growth and c-Fos immunoreactivity; F.D. devised and carried out behavioral and lesion studies relating vH, iH and dH FFI growth to subdivision function in learning. P.C. helped devise the experiments and wrote the manuscript. All authors discussed the results and commented the manuscript.

Corresponding author

Correspondence to Pico Caroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruediger, S., Spirig, D., Donato, F. et al. Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning. Nat Neurosci 15, 1563–1571 (2012). https://doi.org/10.1038/nn.3224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing