Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptic plasticity in neuronal circuits regulating energy balance


Maintaining energy balance is of paramount importance for metabolic health and survival. It is achieved through the coordinated regulation of neuronal circuits that control a wide range of physiological processes affecting energy intake and expenditure, such as feeding, metabolic rate, locomotor activity, arousal, growth and reproduction. Neuronal populations distributed throughout the CNS but highly enriched in the mediobasal hypothalamus, sense hormonal, nutrient and neuronal signals of systemic energy status and relay this information to secondary neurons that integrate the information and regulate distinct physiological parameters in a manner that promotes energy homeostasis. To achieve this, it is critical that neuronal circuits provide information about short-term changes in nutrient availability in the larger context of long-term energy status. For example, the same signals lead to different cellular and physiological responses if delivered under fasted versus fed conditions. Thus, there is a clear need to have mechanisms that rapidly and reversibly adjust responsiveness of hypothalamic circuits to acute changes in nutrient availability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Changes in the balance between the firing rates of POMC and NPY-AgRP neurons in response to the nutrient and hormonal environment are thought to be important for regulating feeding behavior and body weight.


  1. 1

    Feldman, D.E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Zhang, W. & Linden, D.J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4, 885–900 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Horvath, T.L. & Diano, S. The floating blueprint of hypothalamic feeding circuits. Nat. Rev. Neurosci. 5, 662–667 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Horvath, T.L. The hardship of obesity: a soft-wired hypothalamus. Nat. Neurosci. 8, 561–565 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Horvath, T.L. Synaptic plasticity in energy balance regulation. Obesity (Silver Spring) 14 (suppl. 5), 228S–233S (2006).

    CAS  Article  Google Scholar 

  7. 7

    Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Saper, C.B., Chou, T.C. & Elmquist, J.K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Schwartz, M.W. & Porte, D. Jr. Diabetes, obesity, and the brain. Science 307, 375–379 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Mountjoy, K.G., Mortrud, M.T., Low, M.J., Simerly, R.B. & Cone, R.D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308 (1994).

    CAS  PubMed  Google Scholar 

  11. 11

    Ollmann, M.M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Fan, W., Boston, B.A., Kesterson, R.A., Hruby, V.J. & Cone, R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Bagnol, D. et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci. 19, RC26 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Mountjoy, K.G., Wu, C.S., Cornish, J. & Callon, K.E. alpha-MSH and desacetyl-alpha-MSH signaling through melanocortin receptors. Ann. NY Acad. Sci. 994, 58–65 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Smith, M.A. et al. Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances. J. Physiol. (Lond.) 578, 425–438 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Yeo, G.S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Cone, R.D. et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int. J. Obes. Relat. Metab. Disord. 25 (suppl. 5), S63–S67 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Mizuno, T.M. et al. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47, 294–297 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Cowley, M.A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Cowley, M.A. et al. Electrophysiological actions of peripheral hormones on melanocortin neurons. Ann. NY Acad. Sci. 994, 175–186 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Takahashi, K.A. & Cone, R.D. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology 146, 1043–1047 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Elias, C.F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Glaum, S.R. et al. Leptin, the obese gene product, rapidly modulates synaptic transmission in the hypothalamus. Mol. Pharmacol. 50, 230–235 (1996).

    CAS  PubMed  Google Scholar 

  26. 26

    Cowley, M.A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    CAS  Article  Google Scholar 

  27. 27

    van den Top, M., Lee, K., Whyment, A.D., Blanks, A.M. & Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat. Neurosci. 7, 493–494 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Horvath, T.L., Naftolin, F., Kalra, S.P. & Leranth, C. Neuropeptide Y innervation of beta-endorphin–containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis. Endocrinology 131, 2461–2467 (1992).

    CAS  Article  Google Scholar 

  30. 30

    Roseberry, A.G., Liu, H., Jackson, A.C., Cai, X. & Friedman, J.M. Neuropeptide Y–mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice. Neuron 41, 711–722 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Baskin, D.G. et al. Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes 47, 538–543 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Baskin, D.G., Breininger, J.F., Bonigut, S. & Miller, M.A. Leptin binding in the arcuate nucleus is increased during fasting. Brain Res. 828, 154–158 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Luckman, S.M., Rosenzweig, I. & Dickson, S.L. Activation of arcuate nucleus neurons by systemic administration of leptin and growth hormone–releasing peptide-6 in normal and fasted rats. Neuroendocrinology 70, 93–100 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Gao, Q. et al. Anorectic estrogen mimics leptin′s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat. Med. 13, 89–94 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Gyengesi, E. et al. Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice. Endocrinology 151, 5395–5402 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Qiu, J., Fang, Y., Ronnekleiv, O.K. & Kelly, M.J. Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J. Neurosci. 30, 1560–1565 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Padilla, S.L., Reef, D. & Zeltser, L.M. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations. Endocrinology 153, 1219–1231 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Münzberg, H., Huo, L., Nillni, E.A., Hollenberg, A.N. & Bjorbaek, C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144, 2121–2131 (2003).

    Article  Google Scholar 

  39. 39

    Williams, K.W. et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J. Neurosci. 30, 2472–2479 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Hentges, S.T., Otero-Corchon, V., Pennock, R.L., King, C.M. & Low, M.J. Proopiomelanocortin expression in both GABA and glutamate neurons. J. Neurosci. 29, 13684–13690 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Fioramonti, X. et al. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes 56, 1219–1227 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Padilla, S.L., Carmody, J.S. & Zeltser, L.M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).

    CAS  Article  Google Scholar 

  43. 43

    Sohn, J.W. et al. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71, 488–497 (2011).

    CAS  Article  Google Scholar 

  44. 44

    King, C.M. & Hentges, S.T. Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites. PLoS ONE 6, e25864 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Sternson, S.M., Shepherd, G.M. & Friedman, J.M. Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nat. Neurosci. 8, 1356–1363 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Yang, Y., Atasoy, D., Su, H.H. & Sternson, S.M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012).

    Article  Google Scholar 

  48. 48

    Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Luquet, S., Perez, F.A., Hnasko, T.S. & Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    CAS  Article  Google Scholar 

  50. 50

    Dietrich, M.O. et al. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J. Neurosci. 30, 11815–11825 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Andrews, Z.B. et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008).

    CAS  Article  Google Scholar 

  52. 52

    Atasoy, D., Betley, J.N., Su, H.H. & Sternson, S.M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    CAS  Article  Google Scholar 

  53. 53

    Xu, Y., O'Brien, W.G. III, Lee, C.C., Myers, M.G. Jr. & Tong, Q. Role of GABA release from leptin receptor–expressing neurons in body weight regulation. Endocrinology 153, 2223–2233 (2012).

    CAS  Article  Google Scholar 

  54. 54

    Münzberg, H. et al. Appropriate inhibition of orexigenic hypothalamic arcuate nucleus neurons independently of leptin receptor/STAT3 signaling. J. Neurosci. 27, 69–74 (2007).

    Article  Google Scholar 

  55. 55

    Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat. Neurosci. 9, 381–388 (2006).

    CAS  Article  Google Scholar 

  56. 56

    Kohno, D., Sone, H., Minokoshi, Y. & Yada, T. Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem. Biophys. Res. Commun. 366, 388–392 (2008).

    CAS  Article  Google Scholar 

  57. 57

    Spanswick, D., Smith, M.A., Groppi, V.E., Logan, S.D. & Ashford, M.L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    CAS  Article  Google Scholar 

  58. 58

    Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    CAS  Article  Google Scholar 

  59. 59

    Betley, J.N. et al. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit. Cell 139, 161–174 (2009).

    CAS  Article  Google Scholar 

  60. 60

    Facchinetti, F. et al. Structural, neurochemical and behavioural consequences of neonatal blockade of NMDA receptor through chronic treatment with CGP 39551 or MK-801. Brain Res. Dev. Brain Res. 74, 219–224 (1993).

    CAS  Article  Google Scholar 

  61. 61

    Herlenius, E. & Lagercrantz, H. Development of neurotransmitter systems during critical periods. Exp. Neurol. 190 (suppl. 1), 8–21 (2004).

    Article  Google Scholar 

  62. 62

    Matsumoto, A. & Arai, Y. Morphologic evidence for intranuclear circuits in the hypothalamic arcuate nucleus. Exp. Neurol. 59, 404–412 (1978).

    CAS  Article  Google Scholar 

  63. 63

    Horvath, T.L. & Gao, X.B. Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab. 1, 279–286 (2005).

    CAS  Article  Google Scholar 

  64. 64

    Chemelli, R.M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    CAS  Article  Google Scholar 

  65. 65

    Horvath, T.L., Diano, S. & van den Pol, A.N. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J. Neurosci. 19, 1072–1087 (1999).

    CAS  Article  Google Scholar 

  66. 66

    Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein–coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    CAS  Article  Google Scholar 

  67. 67

    Appelbaum, L. et al. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 68, 87–98 (2010).

    CAS  Article  Google Scholar 

  68. 68

    Jo, Y.H., Chen, Y.J., Chua, S.C. Jr., Talmage, D.A. & Role, L.W. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 48, 1055–1066 (2005).

    CAS  Article  Google Scholar 

  69. 69

    Crosby, K.M., Inoue, W., Pittman, Q.J. & Bains, J.S. Endocannabinoids gate state-dependent plasticity of synaptic inhibition in feeding circuits. Neuron 71, 529–541 (2011).

    CAS  Article  Google Scholar 

  70. 70

    Naleid, A.M., Grace, M.K., Cummings, D.E. & Levine, A.S. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26, 2274–2279 (2005).

    CAS  Article  Google Scholar 

  71. 71

    Abizaid, A., Gao, Q. & Horvath, T.L. Thoughts for food: brain mechanisms and peripheral energy balance. Neuron 51, 691–702 (2006).

    CAS  Article  Google Scholar 

  72. 72

    Korotkova, T.M., Brown, R.E., Sergeeva, O.A., Ponomarenko, A.A. & Haas, H.L. Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur. J. Neurosci. 23, 2677–2685 (2006).

    CAS  Article  Google Scholar 

  73. 73

    Dietrich, M.O. et al. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat. Neurosci. 15, 1108–1110 (2012).

    CAS  Article  Google Scholar 

  74. 74

    Lim, B.K., Huang, K.W., Grueter, B.A., Rothwell, P.E. & Malenka, R.C. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487, 183–189 (2012).

    CAS  Article  Google Scholar 

  75. 75

    Liu, J. et al. The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology 148, 5531–5540 (2007).

    CAS  Article  Google Scholar 

  76. 76

    Halaas, J.L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 94, 8878–8883 (1997).

    CAS  Article  Google Scholar 

  77. 77

    Enriori, P.J. et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 5, 181–194 (2007).

    CAS  Article  Google Scholar 

  78. 78

    Myers, M.G. Jr., Leibel, R.L., Seeley, R.J. & Schwartz, M.W. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab. 21, 643–651 (2010).

    CAS  Article  Google Scholar 

  79. 79

    Horvath, T.L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl. Acad. Sci. USA 107, 14875–14880 (2010).

    CAS  Article  Google Scholar 

  80. 80

    Diano, S. et al. Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat. Med. 17, 1121–1127 (2011).

    CAS  Article  Google Scholar 

Download references


The authors are grateful to C.-X. Yi for help generating Figure 1.

Author information



Corresponding author

Correspondence to Matthias H Tschöp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zeltser, L., Seeley, R. & Tschöp, M. Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci 15, 1336–1342 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing