Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling

Abstract

Leptin regulates energy balance. However, knowledge of the critical intracellular transducers of leptin signaling remains incomplete. We found that Rho-kinase 1 (ROCK1) regulates leptin action on body weight homeostasis by activating JAK2, an initial trigger of leptin receptor signaling. Leptin promoted the physical interaction of JAK2 and ROCK1, thereby increasing phosphorylation of JAK2 and downstream activation of Stat3 and FOXO1. Mice lacking ROCK1 in either pro-opiomelanocortin (POMC) or agouti-related protein neurons, mediators of leptin action, displayed obesity and impaired leptin sensitivity. In addition, deletion of ROCK1 in the arcuate nucleus markedly enhanced food intake, resulting in severe obesity. Notably, ROCK1 was a specific mediator of leptin, but not insulin, regulation of POMC neuronal activity. Our data identify ROCK1 as a key regulator of leptin action on energy homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ROCK1 interacts with and phosphorylates JAK2 in hypothalamic GT1-7 cells and hypothalamus.
Figure 2: ROCK1 stimulates Stat3 phosphorylation and FOXO1 nuclear export.
Figure 3: Leptin increases ROCK1 activity in the hypothalamus.
Figure 4: ROCK1 deficiency in POMC neurons leads to obesity.
Figure 5: ROCK1 deficiency in POMC neurons impairs leptin-stimulated Stat3 phosphorylation and food intake.
Figure 6: Leptin-induced POMC neuronal activity is dependent on ROCK1.
Figure 7: Loss of ROCK1 in AgRP neurons leads to obesity.
Figure 8: Hypothalamic ROCK1 signaling regulates food intake and adiposity.

Similar content being viewed by others

References

  1. Bjørbaek, C. Central leptin receptor action and resistance in obesity. J. Investig. Med. 57, 789–794 (2009).

    Article  Google Scholar 

  2. Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S. & Schwartz, M.W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  Google Scholar 

  3. Myers, M.G., Cowley, M.A. & Munzberg, H. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol. 70, 537–556 (2008).

    Article  CAS  Google Scholar 

  4. Elmquist, J.K., Coppari, R., Balthasar, N., Ichinose, M. & Lowell, B.B. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J. Comp. Neurol. 493, 63–71 (2005).

    Article  CAS  Google Scholar 

  5. Elmquist, J.K., Elias, C.F. & Saper, C.B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221–232 (1999).

    Article  CAS  Google Scholar 

  6. Myers, M.G. Jr., Munzberg, H., Leinninger, G.M. & Leshan, R.L. The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab. 9, 117–123 (2009).

    Article  CAS  Google Scholar 

  7. Cheung, C.C., Clifton, D.K. & Steiner, R.A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138, 4489–4492 (1997).

    Article  CAS  Google Scholar 

  8. Wilson, B.D. et al. Physiological and anatomical circuitry between Agouti-related protein and leptin signaling. Endocrinology 140, 2387–2397 (1999).

    Article  CAS  Google Scholar 

  9. van den Top, M., Lee, K., Whyment, A.D., Blanks, A.M. & Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat. Neurosci. 7, 493–494 (2004).

    Article  CAS  Google Scholar 

  10. Mizuno, T.M. et al. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47, 294–297 (1998).

    Article  CAS  Google Scholar 

  11. Schwartz, M.W. et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997).

    Article  CAS  Google Scholar 

  12. Thornton, J.E., Cheung, C.C., Clifton, D.K. & Steiner, R.A. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 138, 5063–5066 (1997).

    Article  CAS  Google Scholar 

  13. Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    Article  CAS  Google Scholar 

  14. van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    Article  CAS  Google Scholar 

  15. Matsui, T. et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15, 2208–2216 (1996).

    Article  CAS  Google Scholar 

  16. Hu, E. & Lee, D. Rho kinase as potential therapeutic target for cardiovascular diseases: opportunities and challenges. Expert Opin. Ther. Targets 9, 715–736 (2005).

    Article  CAS  Google Scholar 

  17. Chun, K.H. et al. In vivo activation of ROCK1 by insulin is impaired in skeletal muscle of humans with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 300, E536–E542 (2011).

    Article  CAS  Google Scholar 

  18. Begum, N., Sandu, O.A., Ito, M., Lohmann, S.M. & Smolenski, A. Active Rho kinase (ROK-alpha) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J. Biol. Chem. 277, 6214–6222 (2002).

    Article  CAS  Google Scholar 

  19. Furukawa, N. et al. Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab. 2, 119–129 (2005).

    Article  CAS  Google Scholar 

  20. Lee, D.H. et al. Targeted disruption of ROCK1 causes insulin resistance in vivo. J. Biol. Chem. 284, 11776–11780 (2009).

    Article  CAS  Google Scholar 

  21. Chun, K.H. et al. Regulation of glucose transport by ROCK1 differs from that of ROCK2 and is controlled by actin polymerization. Endocrinology 153, 1649–1662 (2012).

    Article  CAS  Google Scholar 

  22. Hill, J.W. et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Invest. 118, 1796–1805 (2008).

    Article  CAS  Google Scholar 

  23. Al-Qassab, H. et al. Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab. 10, 343–354 (2009).

    Article  CAS  Google Scholar 

  24. Plum, L. et al. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J. Clin. Invest. 116, 1886–1901 (2006).

    Article  CAS  Google Scholar 

  25. Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006).

    Article  CAS  Google Scholar 

  26. Fukuda, M. et al. Monitoring FoxO1 localization in chemically identified neurons. J. Neurosci. 28, 13640–13648 (2008).

    Article  CAS  Google Scholar 

  27. Coppari, R. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin's effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005).

    Article  CAS  Google Scholar 

  28. Mesaros, A. et al. Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. Cell Metab. 7, 236–248 (2008).

    Article  CAS  Google Scholar 

  29. Huo, L. et al. Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537–547 (2009).

    Article  CAS  Google Scholar 

  30. Cowley, M.A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  Google Scholar 

  31. Ren, D., Li, M., Duan, C. & Rui, L. Identification of SH2-B as a key regulator of leptin sensitivity, energy balance and body weight in mice. Cell Metab. 2, 95–104 (2005).

    Article  CAS  Google Scholar 

  32. Bates, S.H. et al. STAT3 signaling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    Article  CAS  Google Scholar 

  33. Xu, A.W., Ste-Marie, L., Kaelin, C.B. & Barsh, G.S. Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148, 72–80 (2007).

    Article  CAS  Google Scholar 

  34. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    Article  CAS  Google Scholar 

  35. Yoshii, A. & Constantine-Paton, M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev. Neurobiol. 70, 304–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mellon, P.L. et al. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10 (1990).

    Article  CAS  Google Scholar 

  37. Bjørbaek, C., Uotani, S., da Silva, B. & Flier, J.S. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 272, 32686–32695 (1997).

    Article  Google Scholar 

  38. Bacia, K., Kim, S.A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3, 83–89 (2006).

    Article  CAS  Google Scholar 

  39. Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998–1000 (2008).

    Article  CAS  Google Scholar 

  40. van den Pol, A.N. et al. Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. J. Neurosci. 29, 4622–4639 (2009).

    Article  CAS  Google Scholar 

  41. Huo, L., Grill, H.J. & Bjorbaek, C. Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes 55, 567–573 (2006).

    Article  CAS  Google Scholar 

  42. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    Article  CAS  Google Scholar 

  43. Kim, M.S. et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci. 9, 901–906 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Kahn and T. Flier for valuable suggestions; L. Huo, S.D. Ha, S. Baver, S. Yee, T. Liu, S.-M. Hong, N. Wang, D. Kim, B. Enkhjargal for technical assistance, and L. Wei for DN-Rock1 cDNA. This work was supported by grants from the US National Institutes of Health (1R01DK083567 to Y.-B.K., 5R01CA127247 to S.W.L. and P30DK057521 to D.K.) and the American Diabetes Association (1-09-RA-87 to Y.-B.K.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-B.K., H.H. and B.B.L. designed the study. J.M.Z. and C.B. provided conceptual advice. H.H. performed most of the mice experiments and some of the in vitro studies. D.K. generated several lines of model mice. K.H.B. and B.L. performed most of the in vitro studies, including PLA and FCCS experiments. C.Y. was responsible for the electrophysiology studies. S.K. carried out AAV injection experiments. D.H.L. bred and maintained Rock1loxP/loxP mice. S.W.L. generated adenovirus encoding ROCK1. B.-C.O. performed immunoblotting analyses. M.S.K. performed food intake studies with adenovirus. C.B. carried out immunohistochemistry experiments. All of the authors analyzed and interpreted experimental data. J.M.Z., C.B., B.B.L. and Y.-B.K. wrote the manuscript.

Corresponding author

Correspondence to Young-Bum Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 3445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Kong, D., Byun, K. et al. Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling. Nat Neurosci 15, 1391–1398 (2012). https://doi.org/10.1038/nn.3207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing