Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction

Abstract

The growing rates of obesity have prompted comparisons between the uncontrolled intake of food and drugs; however, an evaluation of the equivalence of food- and drug-related behaviors requires a thorough understanding of the underlying neural circuits driving each behavior. Although it has been attractive to borrow neurobiological concepts from addiction to explore compulsive food seeking, a more integrated model is needed to understand how food and drugs differ in their ability to drive behavior. In this Review, we will examine the commonalities and differences in the systems-level and behavioral responses to food and to drugs of abuse, with the goal of identifying areas of research that would address gaps in our understanding and ultimately identify new treatments for obesity or drug addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Areas of the brain mediating food intake and drug seeking.

Similar content being viewed by others

References

  1. Kenny, P.J. Common cellular and molecular mechanisms in obesity and drug addiction. Nat. Rev. Neurosci. 12, 638–651 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Ziauddeen, H., Farooqi, I.S. & Fletcher, P.C. Obesity and the brain: how convincing is the addiction model? Nat. Rev. Neurosci. 13, 279–286 10.1038/nrn3212 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Baldo, B.A. & Kelley, A.E. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl.) 191, 439–459 (2007).

    Article  CAS  Google Scholar 

  4. Horvath, T.L. & Diano, S. The floating blueprint of hypothalamic feeding circuits. Nat. Rev. Neurosci. 5, 662–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. van den Pol, A.N. Weighing the role of hypothalamic feeding neurotransmitters. Neuron 40, 1059–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Koob, G.F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Schultz, W. Behavioral dopamine signals. Trends Neurosci. 30, 203–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Wise, R.A., Spindler, J. & Legault, L. Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Can. J. Psychol. 32, 77–85 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Wise, R.A. Role of brain dopamine in food reward and reinforcement. Phil. Trans. R. Soc. Lond. B 361, 1149–1158 (2006).

    Article  CAS  Google Scholar 

  10. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Berridge, K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.) 191, 391–431 (2007).

    Article  CAS  Google Scholar 

  12. Salamone, J.D., Mahan, K. & Rogers, S. Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol. Biochem. Behav. 44, 605–610 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Baldo, B.A., Sadeghian, K., Basso, A.M. & Kelley, A.E. Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav. Brain Res. 137, 165–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Palmiter, R.D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 30, 375–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, Q.Y. & Palmiter, R.D. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Cannon, C.M. & Palmiter, R.D. Reward without dopamine. J. Neurosci. 23, 10827–10831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kelley, A.E., Baldo, B.A., Pratt, W.E. & Will, M.J. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol. Behav. 86, 773–795 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Aponte, Y., Atasoy, D. & Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz, G.J. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16, 866–873 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Goeders, N.E. Stress and cocaine addiction. J. Pharmacol. Exp. Ther. 301, 785–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Dar, R. & Frenk, H. Do smokers self-administer pure nicotine? A review of the evidence. Psychopharmacology (Berl.) 173, 18–26 (2004).

    Article  CAS  Google Scholar 

  22. Gray, M.A. & Critchley, H.D. Interoceptive basis to craving. Neuron 54, 183–186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hommel, J.D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Fulton, S. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. DiLeone, R.J., Georgescu, D. & Nestler, E.J. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 73, 759–768 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Havel, P.J. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp. Biol. Med. (Maywood) 226, 963–977 (2001).

    Article  CAS  Google Scholar 

  27. Ren, X. et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30, 8012–8023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fowler, C.D., Lu, Q., Johnson, P.M., Marks, M.J. & Kenny, P.J. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471, 597–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frahm, S. et al. Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 70, 522–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Koob, G.F. Animal models of drug addiction. in Psychopharmacology: The Fourth Generation of Progress (eds. Bloom, F.E. & Kupfer, D.J.) 759–772 (Lippincott Williams & Wilkins, 1995).

  31. Wheeler, R.A. et al. Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state. Biol. Psychiatry 69, 1067–1074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wise, R.A. & Kiyatkin, E.A. Differentiating the rapid actions of cocaine. Nat. Rev. Neurosci. 12, 479–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmed, S.H. & Koob, G.F. Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, Q., Boyle, M.P. & Palmiter, R.D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yamamoto, T. Brain regions responsible for the expression of conditioned taste aversion in rats. Chem. Senses 32, 105–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Stark, R. et al. Erotic and disgust-inducing pictures–differences in the hemodynamic responses of the brain. Biol. Psychol. 70, 19–29 (2005).

    Article  PubMed  Google Scholar 

  37. Wright, C. & Moore, R.D. Disulfiram treatment of alcoholism. Am. J. Med. 88, 647–655 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Sorensen, L.B., Moller, P., Flint, A., Martens, M. & Raben, A. Effect of sensory perception of foods on appetite and food intake: a review of studies on humans. Int. J. Obes. Relat. Metab. Disord. 27, 1152–1166 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Stewart, J., de Wit, H. & Eikelboom, R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev. 91, 251–268 (1984).

    Article  CAS  PubMed  Google Scholar 

  40. Seymour, B. Carry on eating: neural pathways mediating conditioned potentiation of feeding. J. Neurosci. 26, 1061–1062 discussion 1062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh, A. et al. Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proc. Natl. Acad. Sci. USA 106, 13100–13105 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Dalley, J.W., Everitt, B.J. & Robbins, T.W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680–694 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Jentsch, J.D. & Taylor, J.R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl.) 146, 373–390 (1999).

    Article  CAS  Google Scholar 

  45. Davidson, T.L. et al. Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation. Hippocampus 19, 235–252 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grakalic, I., Panlilio, L.V., Quiroz, C. & Schindler, C.W. Effects of orbitofrontal cortex lesions on cocaine self-administration. Neuroscience 165, 313–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kalivas, P.W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45, 647–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Mena, J.D., Sadeghian, K. & Baldo, B.A. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex. J. Neurosci 31, 3249–3260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vucetic, Z., Kimmel, J. & Reyes, T.M. Chronic high-fat diet drives postnatal epigenetic regulation of mu-opioid receptor in the brain. Neuropsychopharmacology 36, 1199–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guegan, T. et al. Operant behavior to obtain palatable food modifies ERK activity in the brain reward circuit. Eur. Neuropsychopharmacol. 10.1016/j.euroneuro.2012.04.009 (2012).

  51. Guegan, T. et al. Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. Eur. Neuropsychopharmacol. 10.1016/j.euroneuro.2012.04.004 (2012).

  52. Small, D.M., Veldhuizen, M.G., Felsted, J., Mak, Y.E. & McGlone, F. Separable substrates for anticipatory and consummatory food chemosensation. Neuron 57, 786–797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piguet, O. Eating disturbance in behavioural-variant frontotemporal dementia. J. Mol. Neurosci. 45, 589–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Kyrkouli, S.E., Stanley, B.G., Seirafi, R.D. & Leibowitz, S.F. Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide's effects in the brain. Peptides 11, 995–1001 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Stanley, B.G. & Leibowitz, S.F. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc. Natl. Acad. Sci. USA 82, 3940–3943 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maric, T., Cantor, A., Cuccioletta, H., Tobin, S. & Shalev, U. Neuropeptide Y augments cocaine self-administration and cocaine-induced hyperlocomotion in rats. Peptides 30, 721–726 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Narasimhaiah, R., Kamens, H.M. & Picciotto, M.R. Effects of galanin on cocaine-mediated conditioned place preference and ERK signaling in mice. Psychopharmacology (Berl.) 204, 95–102 (2009).

    Article  CAS  Google Scholar 

  58. Hsu, R. et al. Blockade of melanocortin transmission inhibits cocaine reward. Eur. J. Neurosci. 21, 2233–2242 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Benoit, S.C. et al. A novel selective melanocortin-4 receptor agonist reduces food intake in rats and mice without producing aversive consequences. J. Neurosci. 20, 3442–3448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Löf, E., Olausson, P., Stomberg, R., Taylor, J.R. & Soderpalm, B. Nicotinic acetylcholine receptors are required for the conditioned reinforcing properties of sucrose-associated cues. Psychopharmacology (Berl.) 212, 321–328 (2010).

    Article  CAS  Google Scholar 

  61. Mineur, Y.S. et al. Nicotine decreases food intake through activation of POMC neurons. Science 332, 1330–1332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, M., Gosnell, B.A. & Kelley, A.E. Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J. Pharmacol. Exp. Ther. 285, 908–914 (1998).

    CAS  PubMed  Google Scholar 

  63. Brabant, C., Kuschpel, A.S. & Picciotto, M.R. Locomotion and self-administration induced by cocaine in 129/OlaHsd mice lacking galanin. Behav. Neurosci. 124, 828–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lenoir, M., Serre, F., Cantin, L. & Ahmed, S.H. Intense sweetness surpasses cocaine reward. PLoS ONE 2, e698 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Avena, N.M. & Hoebel, B.G. A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 122, 17–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Kearns, D.N., Gomez-Serrano, M.A. & Tunstall, B.J. A review of preclinical research demonstrating that drug and non-drug reinforcers differentially affect behavior. Curr. Drug Abuse Rev. 4, 261–269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pickens, C.L. et al. Effect of fenfluramine on reinstatement of food seeking in female and male rats: implications for the predictive validity of the reinstatement model. Psychopharmacology (Berl.) 221, 341–353 (2012).

    Article  CAS  Google Scholar 

  68. Lu, L., Grimm, J.W., Hope, B.T. & Shaham, Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47 (suppl. 1) 214–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Ahmed, S.H. & Koob, G.F. Cocaine- but not food-seeking behavior is reinstated by stress after extinction. Psychopharmacology (Berl.) 132, 289–295 (1997).

    Article  CAS  Google Scholar 

  70. Nair, S.G., Gray, S.M. & Ghitza, U.E. Role of food type in yohimbine- and pellet-priming-induced reinstatement of food seeking. Physiol. Behav. 88, 559–566 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Troop, N.A. & Treasure, J.L. Psychosocial factors in the onset of eating disorders: responses to life-events and difficulties. Br. J. Med. Psychol. 70, 373–385 (1997).

    Article  PubMed  Google Scholar 

  72. Blanchard, D.C. et al. Visible burrow system as a model of chronic social stress: behavioral and neuroendocrine correlates. Psychoneuroendocrinology 20, 117–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Dulawa, S.C. & Hen, R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci. Biobehav. Rev. 29, 771–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Smagin, G.N., Howell, L.A., Redmann, S. Jr., Ryan, D.H. & Harris, R.B. Prevention of stress-induced weight loss by third ventricle CRF receptor antagonist. Am. J. Physiol. 276, R1461–R1468 (1999).

    CAS  PubMed  Google Scholar 

  75. Torregrossa, M.M., Quinn, J.J. & Taylor, J.R. Impulsivity, compulsivity, and habit: the role of orbitofrontal cortex revisited. Biol. Psychiatry 63, 253–255 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pierce, R.C. & Vanderschuren, L.J. Kicking the habit: the neural basis of ingrained behaviors in cocaine addiction. Neurosci. Biobehav. Rev. 35, 212–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Belin, D. & Everitt, B.J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Zapata, A., Minney, V.L. & Shippenberg, T.S. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J. Neurosci. 30, 15457–15463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Johnson, P.M. & Kenny, P.J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Forlano, P.M. & Cone, R.D. Conserved neurochemical pathways involved in hypothalamic control of energy homeostasis. J. Comp. Neurol. 505, 235–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Gearhardt, A.N., Corbin, W.R. & Brownell, K.D. Food addiction: an examination of the diagnostic criteria for dependence. J. Addict. Med. 3, 1–7 (2009).

    Article  PubMed  Google Scholar 

  82. DiLeone, R.J., Georgescu, D. & Nestler, E.J. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 73, 759–768 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Shalev, U., Yap, J. & Shaham, Y. Leptin attenuates acute food deprivation-induced relapse to heroin seeking. J. Neurosci. 21, RC129 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith, R.J., Tahsili-Fahadan, P. & Aston-Jones, G. Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology 58, 179–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Shiraishi, T., Oomura, Y., Sasaki, K. & Wayner, M.J. Effects of leptin and orexin-A on food intake and feeding related hypothalamic neurons. Physiol. Behav. 71, 251–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Edwards, C.M. et al. The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J. Endocrinol. 160, R7–R12 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Chung, S. et al. The melanin-concentrating hormone system modulates cocaine reward. Proc. Natl. Acad. Sci. USA 106, 6772–6777 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Boules, M. et al. The neurotensin receptor agonist NT69L suppresses sucrose-reinforced operant behavior in the rat. Brain Res. 1127, 90–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Richelson, E., Boules, M. & Fredrickson, P. Neurotensin agonists: possible drugs for treatment of psychostimulant abuse. Life Sci. 73, 679–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Hunter, R.G. & Kuhar, M.J. CART peptides as targets for CNS drug development. Curr. Drug Targets CNS Neurol. Disord. 2, 201–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Jerlhag, E., Egecioglu, E., Dickson, S.L. & Engel, J.A. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology (Berl.) 211, 415–422 (2010).

    Article  CAS  Google Scholar 

  92. Abizaid, A. et al. Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience 192, 500–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229–3239 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants DK076964 (R.J.D.), DA011017 (J.R.T.), DA015222 (J.R.T.), DA15425 (M.R.P.) and DA014241 (M.R.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina R Picciotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiLeone, R., Taylor, J. & Picciotto, M. The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat Neurosci 15, 1330–1335 (2012). https://doi.org/10.1038/nn.3202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing