Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decision-making in the adolescent brain

Abstract

Adolescence is characterized by making risky decisions. Early lesion and neuroimaging studies in adults pointed to the ventromedial prefrontal cortex and related structures as having a key role in decision-making. More recent studies have fractionated decision-making processes into its various components, including the representation of value, response selection (including inter-temporal choice and cognitive control), associative learning, and affective and social aspects. These different aspects of decision-making have been the focus of investigation in recent studies of the adolescent brain. Evidence points to a dissociation between the relatively slow, linear development of impulse control and response inhibition during adolescence versus the nonlinear development of the reward system, which is often hyper-responsive to rewards in adolescence. This suggests that decision-making in adolescence may be particularly modulated by emotion and social factors, for example, when adolescents are with peers or in other affective ('hot') contexts.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synaptic development in the human brain.
Figure 2: Relationship between response inhibitory control and decision-making in humans with large frontal lesions.
Figure 3: Major components of the human reward brain circuitry.
Figure 4: Performance on the CGT.
Figure 5: The emotional go/no-go task.
Figure 6: The stoplight driving game study.
Figure 7: A qualitative meta-analysis of the region of dmPFC that consistently shows decreased activity during mentalizing tasks between late childhood and adulthood.

References

  1. 1

    Steinberg, L. Adolescence, 9th edn. (McGraw-Hill Higher Education, 2010).

  2. 2

    Viner, R.M. et al. Adolescence and the social determinants of health. Lancet 379, 1641–1652 (2012).

    Article  PubMed  Google Scholar 

  3. 3

    Giedd, J.N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    Article  CAS  Google Scholar 

  4. 4

    Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA 101, 8174–8179 (2004).

    Article  CAS  Google Scholar 

  5. 5

    Shaw, P. et al. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586–3594 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72, 873–884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Brain Development Cooperative Group. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cereb. Cortex 22, 1–12 (2012).

  8. 8

    Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA 108, 13281–13286 (2011).

    Article  PubMed  Google Scholar 

  9. 9

    Rubia, K. et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage 13, 250–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Aron, A.R., Behrens, T.E., Smith, S., Frank, M.J. & Poldrack, R. A Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Luna, B., Garver, K.E., Urban, T.A., Lazar, N.A. & Sweeney, J.A. Maturation of cognitive processes from late childhood to adulthood. Child Dev. 75, 1357–1372 (2004).

    Article  PubMed  Google Scholar 

  12. 12

    Houdé, O., Rossi, S., Lubin, A. & Joliot, M. Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Dev. Sci. 13, 876–885 (2010).

    Article  PubMed  Google Scholar 

  13. 13

    Hare, T.A. et al. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol. Psychiatry 63, 927–934 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Luna, B. et al. Maturation of widely distributed brain function subserves cognitive development. Neuroimage 13, 786–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Rubia, K. et al. Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci. Biobehav. Rev. 24, 13–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Rubia, K. et al. Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum. Brain Mapp. 27, 973–993 (2006).

    Article  PubMed  Google Scholar 

  17. 17

    Durston, S. et al. A shift from diffuse to focal cortical activity with development. Dev. Sci. 9, 1–8 (2006).

    Article  Google Scholar 

  18. 18

    Rachlin, H., Raineri, A. & Cross, D. Subjective probability and delay. J. Exp. Anal. Behav. 55, 233–244 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Mischel, W.S., Shoda, Y. & Rodriguez, M.I. Delay of gratification in children. Science 244, 933–938 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Casey, B.J. et al. Behavioral and neural correlates of delay of gratification 40 years later. Proc. Natl. Acad. Sci. USA 108, 14998–15003 (2011).

    Article  PubMed  Google Scholar 

  21. 21

    McClure, S.M., Laibson, D.I., Loewenstein, G. & Cohen, J.D. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kable, J.W. & Glimcher, P.W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Scheres, A. et al. Temporal and probabilistic discounting of rewards in children and adolescents: effects of age and ADHD symptoms. Neuropsychologia 44, 2092–2103 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Christakou, A., Brammer, M. & Rubia, K. Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. Neuroimage 54, 1344–1354 (2011).

    Article  PubMed  Google Scholar 

  25. 25

    Bernoulli, D. Exploitation of a new theory on the measurement of risk. (First published in 1738; translation by Sommer, L.). Econometrika 22, 22–36 (1954).

    Article  Google Scholar 

  26. 26

    Rangel, A., Camerer, C. & Montagu, P.R. A framework for studying the neurobiology of value-based decision-making. Nat. Rev. Neurosci. 9, 545–556 (2008). Survey of main concepts in the neuroscience of decision-making research, with more detailed explanations of the underlying economic concepts and their relationship to psychological processes than is possible in the current review, and an introduction to the three valuation systems hypothesized to underlie decision-making based on different associative processes: Pavlovian, habitual and goal-directed as well as their interactions—competitive and otherwise.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Kennerley, S.W., Behrens, T.E.J. & Wallis, J.D. Double dissociation of value computations in orbitofrontal and anterior cingulate cortex neurons. Nat. Neurosci. 14, 1581–1589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Tversky, A. & Kahneman, D. Loss aversion in riskless choice: a reference dependent model. Q. J. Econ. 106, 1039–1061 (1991).

    Article  Google Scholar 

  30. 30

    Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrika 47, 263–291 (1979).

    Article  Google Scholar 

  31. 31

    Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 619–639 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Sesack, S.R. & Grace, A.A. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47 (2010).

    Article  Google Scholar 

  34. 34

    Haber, S.N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Bechara, A., Damasio, A.R., Damasio, H. & Anderson, S.W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–15 (1994).

    Article  CAS  Google Scholar 

  36. 36

    Damasio, A. Descartes' Error: Emotion, Reason and the Human Brain (G.P. Putnam, New York, 1994).

  37. 37

    Harbaugh, W.T., Krause, K. & Vesterlund, L. Risk attitudes of children and adults: choices over small and large probability gains and losses. Exp. Econ. 5, 53–84 (2002).

    Article  Google Scholar 

  38. 38

    Van Leijenhorst, L., Westenberg, P.M. & Crone, E.A. A developmental study of risky decisions on the cake gambling task: age and gender analyses of probability estimation and reward evaluation. Dev. Neuropsychol. 33, 179–196 (2008).

    Article  PubMed  Google Scholar 

  39. 39

    Casey, B.J., Jones, R.M. & Hare, T.A. The adolescent brain. Ann. NY Acad. Sci. 1124, 111–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Figner, B., Mackinlay, R.J., Wilkening, F. & Weber, E.U. Affective and deliberative processes in risky choice: age differences in risk taking in the Columbia Card Task. J. Exp. Psychol. Learn. Mem. Cogn. 35, 709–730 (2009).

    Article  PubMed  Google Scholar 

  41. 41

    Cauffman, E. et al. Age differences in affective decision making as indexed by performance on the Iowa Gambling Task. Dev. Psychol. 46, 193–207 (2010).

    Article  PubMed  Google Scholar 

  42. 42

    Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  Google Scholar 

  44. 44

    Daw, N.D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Fellows, L.K. & Farrah, M.J. Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126, 1830–1837 (2003).

    Article  PubMed  Google Scholar 

  46. 46

    Clarke, H.F., Robbins, T.W. & Roberts, A.C. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28, 10972–10982 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Logan, G.D. On the ability to inhibit thought and action: a user?s guide to the stop signal paradigm. in Inhibitory Processes in Attention, Memory and Language (eds. Dagenbach, D. & Carr, T.H.) 189–236 (Academic Press, San Diego, 1994).

  48. 48

    Clark, L. et al. Association between response inhibition and working memory in adult ADHD: a link to right frontal cortex pathology? Biol. Psychiatry 61, 1395–1401 (2007).

    Article  PubMed  Google Scholar 

  49. 49

    Billieux, J., Gay, P., Rochat, L. & van der Linden, N. The role of urgency and its underlying psychological mechanisms in problematic behaviors. Behav. Res. Ther. 48, 1085–1096 (2010).

    Article  PubMed  Google Scholar 

  50. 50

    Eysenck, S.B. & Eysenck, H.J. Impulsiveness and venturesomeness: their position in a dimensional system of personality description. Psychol. Rep. 43, 1247–1255 (1978).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Rogers, R.D. et al. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20, 322–339 (1999).

    Article  CAS  Google Scholar 

  52. 52

    Manes, F. et al. Decision-making processes following damage to the prefrontal cortex. Brain 125, 624–639 (2002).

    Article  Google Scholar 

  53. 53

    Clark, L. et al. Differential effects of insular and ventromedial prefrontal cortex damage on risky decision-making. Brain 131, 1311–1322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Hsu, M., Bhatt, M., Adolphs, R. & Camerer, C. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Huettel, S.A., Song, A.W. & McCarthy, G. Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices. J. Neurosci. 25, 3304–3311 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Levy, I., Snell, J., Nelson, A.J., Rusticini, A. & Glimcher, P.W. Neural representations of subjective value under risk and ambiguity. J. Neurophysiol. 103, 1036–1047 (2010).

    Article  PubMed  Google Scholar 

  57. 57

    Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Galvan, A. et al. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J. Neurosci. 26, 6885–6892 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Gladwin, T.E., Figner, B., Crone, E.A. & Wiers, R.W. Addiction, adolescence, and the integration of control and motivation. Dev. Cogn. Neurosci. 1, 364–376 (2011).

    Article  PubMed  Google Scholar 

  60. 60

    Van Leijenhorst, L. et al. Adolescent risky decision-making: neurocognitive development of reward and control regions. Neuroimage 51, 345–355 (2010).

    Article  PubMed  Google Scholar 

  61. 61

    Bjork, J.M. et al. Incentive-elicited brain activation in adolescents: similarities and differences from young adults. J. Neurosci. 24, 1793–1802 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Geier, C.F., Terwilliger, R., Teslovich, T., Velanova, K. & Luna, B. Immaturities in reward processing and its influence on inhibitory control in adolescence. Cereb. Cortex 20, 1613–1629 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Doremus-Fitzwater, T.L., Varlinskaya, E.I. & Spear, L.P. Motivational systems in adolescence: possible implications for age differences in substance abuse and other risk-taking behaviors. Brain Cogn. 72, 114–123 (2010).

    Article  PubMed  Google Scholar 

  64. 64

    Philpot, R.M. & Wecker, L. Dependence of adolescent novelty-seeking behavior on response phenotype and effects of apparatus scaling. Behav. Neurosci. 122, 861–875 (2008).

    Article  PubMed  Google Scholar 

  65. 65

    Sturman, D.A. & Moghaddam, B. Striatum processes reward differently in adolescents versus adults. Proc. Natl. Acad. Sci. USA 109, 1719–1724 (2012).

    Article  PubMed  Google Scholar 

  66. 66

    Cohen, J.R. et al. A unique adolescent response to reward prediction errors. Nat. Neurosci. 13, 669–671 (2010). This fMRI study dissociated decision value and prediction error in a learning paradigm in 67 participants aged 8–30 years.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Somerville, L.H., Jones, R.M. & Casey, B.J. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 72, 124–133 (2010).

    Article  PubMed  Google Scholar 

  68. 68

    Somerville, L.H., Hare, T. & Casey, B.J. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. J. Cogn. Neurosci. 23, 2123–2134 (2011).

    Article  PubMed  Google Scholar 

  69. 69

    Coricelli, G., Critchley, H.D., Joffily, M., O'Doherty, J.P., Sirigu, A. & Dolan, R. J. Regret and its avoidance: a neuroimaging study of choice behavior. Nat. Neurosci. 8, 1255–1262 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Camille, N. et al. Striatal sensitivity to personal responsibility in a regret-based decision-making task. Cogn. Affect. Behav. Neurosci. 10, 460–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Baird, A.A. & Fugelsang, J.A. The emergence of consequential thought: evidence from neuroscience. Phil. Trans. R. Soc. Lond. B 359, 1797–1804 (2004).

    Article  Google Scholar 

  72. 72

    Burnett, S., Bault, N., Coricelli, G. & Blakemore, S.J. Adolescents′ heightened risk-seeking in a probabilistic gambling task. Cogn. Dev. 25, 183–196 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Crone, E.A., Bullens, L., van der Plas, E.A., Kijkuit, E.J. & Zelazo, P.D. Developmental changes and individual differences in risk and perspective taking in adolescence. Dev. Psychopathol. 20, 1213–1229 (2008).

    Article  PubMed  Google Scholar 

  74. 74

    Paulsen, D.J., Platt, M.L., Huettel, S.A. & Brannon, E.M. Decision-making under risk in children, adolescents, and young adults. Front. Psychol. 2, 72 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Camerer, C.F. Behavioral Game Theory: Experiments in Strategic Interaction. (Princeton University Press, 2003).

  76. 76

    Guth, W., Schmittberger, R. & Schwarze, B. An experimental analysis of Ultimatum Bargaining. J. Econ. Behav. Organ. 3, 367–388 (1982).

    Article  Google Scholar 

  77. 77

    Jensen, K., Call, J. & Tomasello, M. Chimpanzees are rational maximizers in an Ultimatum Game. Science 318, 107–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Sanfey, A., Rilling, J.K., Aronson, J.A., Nystrom, L.E. & Cohen, J.D. Neural basis of economic decision-making in the Ultimatum Game. Science 300, 1755–1758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Greene, J.D., Sommerville, R.B., Nystrom, L.E., Darley, J.M. & Cohen, J.D. An fMRI investigation of emotional engagement in moral judgement. Science 293, 2105–2108 (2001).

    Article  CAS  Google Scholar 

  80. 80

    Gardner, M. & Steinberg, L. Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: an experimental study. Dev. Psychol. 41, 625–635 (2005).

    Article  PubMed  Google Scholar 

  81. 81

    Chein, J., Albert, D., O'Brien, L., Uckert, K. & Steinberg, L. Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry. Dev. Sci. 14, F1–F10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Dumontheil, I., Apperly, I.A. & Blakemore, S.-J. Online usage of theory of mind continues to develop in late adolescence. Devel. Sci. 13, 331–338 (2010).

    Article  Google Scholar 

  83. 83

    Frith, C.D. The social brain? Phil. Trans. R. Soc. Lond. B 362, 671–678 (2007).

    Article  Google Scholar 

  84. 84

    Blakemore, S.J. The social brain in adolescence. Nat. Rev. Neurosci. 9, 267–277 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Wang, A.T., Lee, S.S., Sigman, M. & Dapretto, M. Developmental changes in the neural basis of interpreting communicative intent. Soc. Cogn. Affect. Neurosci. 1, 107–121 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Blakemore, S.J., den Ouden, H., Choudhury, S. & Frith, C. Adolescent development of the neural circuitry for thinking about intentions. Soc. Cogn. Affect. Neurosci. 2, 130–139 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Burnett, S., Bird, G., Moll, J., Frith, C. & Blakemore, S.J. Development during adolescence of the neural processing of social emotion. J. Cogn. Neurosci. 21, 1736–1750 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Güroğlu, B., van den Bos, W. & Crone, E.A. Fairness considerations: increasing understanding of intentionality during adolescence. J. Exp. Child Psychol. 104, 398–409 (2009).

    Article  PubMed  Google Scholar 

  89. 89

    Van den Bos, W., van Dijk, E., Westenberg, M., Rombouts, S.A. & Crone, E.A. Changing brains, changing perspectives: the neurocognitive development of reciprocity. Psychol. Sci. 22, 60–70 (2011). This was the first study to show asynchronous development of the relative contribution of different cortical regions to trust decisions.

    Article  PubMed  Google Scholar 

  90. 90

    Pfeifer, J.H. & Allen, N.B. Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders. Trends Cogn. Sci. 16, 322–329 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Blakemore, S.J. Imaging brain development: the adolescent brain. Neuroimage 61, 397–406 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Harris, J.J., Reynell, C. & Attwell, D. The physiology of developmental changes in BOLD functional imaging signals. Dev. Cogn. Neurosci. 1, 199–216 (2011).

    Article  PubMed  Google Scholar 

  93. 93

    Paus, T., Keshavan, M. & Giedd, J.N. Why do many psychiatirc disorders emerge during adolescence? Nat. Rev. Neurosci. 9, 947–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Whelan, R. et al. Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat. Neurosci. (in the press).

  95. 95

    Clark, L., Manes, F., Antoun, N., Sahakian, B.J. & Robbins, T.W. The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia 41, 1474–1483 (2003).

    Article  PubMed  Google Scholar 

  96. 96

    Clark, L., Lawrence, A.J., Astley-Jones, F. & Gray, N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron 61, 481–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Pfeifer, J.H., Lieberman, M.D. & Dapretto, M. “I know you are but what am I?!”: neural bases of self- and social knowledge retrieval in children and adults. J. Cogn. Neurosci. 19, 1323–1337 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Pfeifer, J.H. et al. Neural correlates of direct and reflected self-appraisals in adolescents and adults: when social perspective-taking informs self-perception. Child Dev. 80, 1016–1038 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Sebastian, C.L. et al. Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults. Soc. Cogn. Affect. Neurosci. 7, 53–63 (2012).

    Article  PubMed  Google Scholar 

  100. 100

    Moor, B.G. et al. Neurodevelopmental changes of reading the mind in the eyes. Soc. Cogn. Affect. Neurosci. 7, 44–52 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.-J.B. is funded by the Royal Society and the Leverhulme Trust, UK. The Behavioural and Clinical Neuroscience Institute, Cambridge, UK is co-funded by the Medical Research Council and the Wellcome Trust. We thank S. Burnett Heyes, I. Dumontheil, A.L. Goddings, E.J. Kilford, K. Mills and N. Wright for commenting on previous versions of the manuscript, T. Wager for help with the meta-analysis using Neurosynth (http://neurosynth.org/), and L. Clark, J. Chein and L. Somerville for help with figures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah-Jayne Blakemore.

Ethics declarations

Competing interests

T.W.R. discloses Cambridge Cognition consultancy and royalties for CANTAB. T.W.R. discloses consultancy and research grants received from E. Lilly Inc., Lundbeck and GlaxoSmithKline.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blakemore, SJ., Robbins, T. Decision-making in the adolescent brain. Nat Neurosci 15, 1184–1191 (2012). https://doi.org/10.1038/nn.3177

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing