Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cued memory reactivation during sleep influences skill learning

Abstract

Information acquired during waking can be reactivated during sleep, promoting memory stabilization. After people learned to produce two melodies in time with moving visual symbols, we enhanced relative performance by presenting one melody during an afternoon nap. Electrophysiological signs of memory processing during sleep corroborated the notion that appropriate auditory stimulation that does not disrupt sleep can nevertheless bias memory consolidation in relevant brain circuitry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Methods and behavioral results.
Figure 2: Sleep cues and physiology.

References

  1. 1

    Diekelmann, S. & Born, J. Nat. Rev. Neurosci. 11, 114–126 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Wilson, M.A. & McNaughton, B.L. Science 265, 676–679 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Nishida, M. & Walker, M.P. PLoS ONE 2, e341 (2007).

    Article  Google Scholar 

  4. 4

    Walker, M.P., Brakefield, T., Morgan, A., Hobson, J.A. & Stickgold, R. Neuron 35, 205–211 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Huber, R., Ghilardi, M.F., Massimini, M. & Tononi, G. Nature 430, 78–81 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Brawn, T.P., Fenn, K.M., Nusbaum, H.C. & Margoliash, D. Learn. Mem. 15, 815–819 (2008).

    Article  Google Scholar 

  7. 7

    Shank, S.S. & Margoliash, D. Nature 458, 73–77 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Dave, A.S. & Margoliash, D. Science 290, 812–816 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Rasch, B., Büchel, C., Gais, S. & Born, J. Science 315, 1426–1429 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Rudoy, J.D., Voss, J.L., Westerberg, C.E. & Paller, K.A. Science 326, 1079 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Baumann, S. Ann. NY Acad. Sci. 1060, 186–188 (2005).

    Article  Google Scholar 

  12. 12

    Lahav, A., Saltzman, E. & Schlaug, G. J. Neurosci. 27, 308–314 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Brain 119, 593–609 (1996).

    Article  Google Scholar 

  14. 14

    Fischer, S., Nitschke, M.F., Melchert, U.H., Erdmann, C. & Born, J. J. Neurosci. 25, 11248–11255 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Landsness, E.C. et al. Sleep 32, 1273–1284 (2009).

    Article  Google Scholar 

  16. 16

    Sanchez, D.J., Gobel, E.W. & Reber, P.J. Psychon. Bull. Rev. 17, 790–796 (2010).

    Article  Google Scholar 

  17. 17

    Gobel, E.W., Sanchez, D.J. & Reber, P.J. J. Exp. Psychol. Learn. Mem. Cogn. 37, 994–1000 (2011).

    Article  Google Scholar 

  18. 18

    Diekelmann, S., Büchel, C., Born, J. & Rasch, B. Nat. Neurosci. 14, 381–386 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Smith, C. & Weeden, K. Psychiatr. J. Univ. Ott. 15, 85–90 (1990).

    CAS  PubMed  Google Scholar 

  20. 20

    Guerrien, A., Dujardin, K., Mandal, O., Sockeel, P. & Leconte, P. Physiol. Behav. 45, 947–950 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Hars, B., Hennevin, E. & Pasques, P. Behav. Brain Res. 18, 241–250 (1985).

    CAS  Article  Google Scholar 

  22. 22

    Tamaki, M., Matsuoka, T., Nittono, H. & Hori, T. Clin. Neurophysiol. 120, 878–886 (2009).

    Article  Google Scholar 

  23. 23

    Nir, Y. et al. Neuron 70, 153–169 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Ferrarelli, F. et al. Am. J. Psychiatry 164, 483–492 (2007).

    Article  Google Scholar 

  25. 25

    Mander, B.A., Santhanam, S., Saletin, J.M. & Walker, M.P. Curr. Biol. 21, R183–R184 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Mander, J. Saletin, S. Greer and D. Oudiette for technical help. This material is based on work supported by National Science Foundation grant BCS1025697, National Institute of Aging grant T32-AG020418 and National Institute of Neurological Diseases and Stroke grant T32-NS047987.

Author information

Affiliations

Authors

Contributions

J.W.A. and K.A.P. conceived the design and all of the authors contributed to developing the procedures. J.W.A. and J.K.O. collected the data. J.W.A. analyzed the data. J.W.A. and K.A.P. wrote the manuscript. All of the authors discussed the results and finalized the manuscript.

Corresponding author

Correspondence to Ken A Paller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Results (PDF 1092 kb)

Supplementary Movie 1

A real-time movie of task performance. (MOV 10347 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Antony, J., Gobel, E., O'Hare, J. et al. Cued memory reactivation during sleep influences skill learning. Nat Neurosci 15, 1114–1116 (2012). https://doi.org/10.1038/nn.3152

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing