Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Cued memory reactivation during sleep influences skill learning


Information acquired during waking can be reactivated during sleep, promoting memory stabilization. After people learned to produce two melodies in time with moving visual symbols, we enhanced relative performance by presenting one melody during an afternoon nap. Electrophysiological signs of memory processing during sleep corroborated the notion that appropriate auditory stimulation that does not disrupt sleep can nevertheless bias memory consolidation in relevant brain circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods and behavioral results.
Figure 2: Sleep cues and physiology.

Similar content being viewed by others


  1. Diekelmann, S. & Born, J. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  Google Scholar 

  2. Wilson, M.A. & McNaughton, B.L. Science 265, 676–679 (1994).

    Article  CAS  Google Scholar 

  3. Nishida, M. & Walker, M.P. PLoS ONE 2, e341 (2007).

    Article  Google Scholar 

  4. Walker, M.P., Brakefield, T., Morgan, A., Hobson, J.A. & Stickgold, R. Neuron 35, 205–211 (2002).

    Article  CAS  Google Scholar 

  5. Huber, R., Ghilardi, M.F., Massimini, M. & Tononi, G. Nature 430, 78–81 (2004).

    Article  CAS  Google Scholar 

  6. Brawn, T.P., Fenn, K.M., Nusbaum, H.C. & Margoliash, D. Learn. Mem. 15, 815–819 (2008).

    Article  Google Scholar 

  7. Shank, S.S. & Margoliash, D. Nature 458, 73–77 (2009).

    Article  CAS  Google Scholar 

  8. Dave, A.S. & Margoliash, D. Science 290, 812–816 (2000).

    Article  CAS  Google Scholar 

  9. Rasch, B., Büchel, C., Gais, S. & Born, J. Science 315, 1426–1429 (2007).

    Article  CAS  Google Scholar 

  10. Rudoy, J.D., Voss, J.L., Westerberg, C.E. & Paller, K.A. Science 326, 1079 (2009).

    Article  CAS  Google Scholar 

  11. Baumann, S. Ann. NY Acad. Sci. 1060, 186–188 (2005).

    Article  Google Scholar 

  12. Lahav, A., Saltzman, E. & Schlaug, G. J. Neurosci. 27, 308–314 (2007).

    Article  CAS  Google Scholar 

  13. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Brain 119, 593–609 (1996).

    Article  Google Scholar 

  14. Fischer, S., Nitschke, M.F., Melchert, U.H., Erdmann, C. & Born, J. J. Neurosci. 25, 11248–11255 (2005).

    Article  CAS  Google Scholar 

  15. Landsness, E.C. et al. Sleep 32, 1273–1284 (2009).

    Article  Google Scholar 

  16. Sanchez, D.J., Gobel, E.W. & Reber, P.J. Psychon. Bull. Rev. 17, 790–796 (2010).

    Article  Google Scholar 

  17. Gobel, E.W., Sanchez, D.J. & Reber, P.J. J. Exp. Psychol. Learn. Mem. Cogn. 37, 994–1000 (2011).

    Article  Google Scholar 

  18. Diekelmann, S., Büchel, C., Born, J. & Rasch, B. Nat. Neurosci. 14, 381–386 (2011).

    Article  CAS  Google Scholar 

  19. Smith, C. & Weeden, K. Psychiatr. J. Univ. Ott. 15, 85–90 (1990).

    CAS  PubMed  Google Scholar 

  20. Guerrien, A., Dujardin, K., Mandal, O., Sockeel, P. & Leconte, P. Physiol. Behav. 45, 947–950 (1989).

    Article  CAS  Google Scholar 

  21. Hars, B., Hennevin, E. & Pasques, P. Behav. Brain Res. 18, 241–250 (1985).

    Article  CAS  Google Scholar 

  22. Tamaki, M., Matsuoka, T., Nittono, H. & Hori, T. Clin. Neurophysiol. 120, 878–886 (2009).

    Article  Google Scholar 

  23. Nir, Y. et al. Neuron 70, 153–169 (2011).

    Article  CAS  Google Scholar 

  24. Ferrarelli, F. et al. Am. J. Psychiatry 164, 483–492 (2007).

    Article  Google Scholar 

  25. Mander, B.A., Santhanam, S., Saletin, J.M. & Walker, M.P. Curr. Biol. 21, R183–R184 (2011).

    Article  CAS  Google Scholar 

Download references


We thank B. Mander, J. Saletin, S. Greer and D. Oudiette for technical help. This material is based on work supported by National Science Foundation grant BCS1025697, National Institute of Aging grant T32-AG020418 and National Institute of Neurological Diseases and Stroke grant T32-NS047987.

Author information

Authors and Affiliations



J.W.A. and K.A.P. conceived the design and all of the authors contributed to developing the procedures. J.W.A. and J.K.O. collected the data. J.W.A. analyzed the data. J.W.A. and K.A.P. wrote the manuscript. All of the authors discussed the results and finalized the manuscript.

Corresponding author

Correspondence to Ken A Paller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Results (PDF 1092 kb)

Supplementary Movie 1

A real-time movie of task performance. (MOV 10347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony, J., Gobel, E., O'Hare, J. et al. Cued memory reactivation during sleep influences skill learning. Nat Neurosci 15, 1114–1116 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing