Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission

Abstract

Optogenetic silencing using light-driven ion fluxes permits rapid and effective inhibition of neural activity. Using rodent hippocampal neurons, we found that silencing activity with a chloride pump can increase the probability of synaptically evoked spiking after photoactivation; this did not occur with a proton pump. This effect can be accounted for by changes to the GABAA receptor reversal potential and demonstrates an important difference between silencing strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic silencing strategies differ in their effects on synaptically evoked spiking activity.
Figure 2: A light-activated Cl pump, but not a H+ pump, causes a sustained change in GABAergic transmission.

Similar content being viewed by others

References

  1. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  2. Zhang, F. et al. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  3. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenböck, G. Neuron 33, 15–22 (2002).

    Article  CAS  Google Scholar 

  4. Gradinaru, V. et al. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  Google Scholar 

  5. Fenno, L., Yizhar, O. & Deisseroth, K. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  6. Tønnesen, J., Sørensen, A.T., Deisseroth, K., Lundberg, C. & Kokaia, M. Proc. Natl. Acad. Sci. USA 106, 12162–12167 (2009).

    Article  Google Scholar 

  7. Gourine, A.V. et al. Science 329, 571–575 (2010).

    Article  CAS  Google Scholar 

  8. Han, X. & Boyden, E.S. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  9. Chow, B.Y. et al. Nature 463, 98–102 (2010).

    Article  CAS  Google Scholar 

  10. Mattis, J. et al. Nat. Methods 9, 159–172 (2012).

    Article  CAS  Google Scholar 

  11. Gradinaru, V. et al. Cell 141, 154–165 (2010).

    Article  CAS  Google Scholar 

  12. Madisen, L. et al. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  Google Scholar 

  13. Staley, K.J. & Proctor, W.R. J. Physiol. (Lond.) 519, 693–712 (1999).

    Article  CAS  Google Scholar 

  14. Wright, R., Raimondo, J.V. & Akerman, C.J. Neural Plast. 2011, 728395 (2011).

    Article  CAS  Google Scholar 

  15. Chesler, M. Physiol. Rev. 83, 1183–1221 (2003).

    Article  CAS  Google Scholar 

  16. Stoppini, L., Buchs, P.A. & Muller, D. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  17. Tyzio, R., Holmes, G.L., Ben-Ari, Y. & Khazipov, R. Epilepsia 48, 96–105 (2007).

    Article  CAS  Google Scholar 

  18. Streit, P., Thompson, S.M. & Gähwiler, B.H. Eur. J. Neurosci. 1, 603–615 (1989).

    Article  Google Scholar 

  19. De Simoni, A., Griesinger, C.B. & Edwards, F.A. J. Physiol. (Lond.) 550, 135–147 (2003).

    Article  CAS  Google Scholar 

  20. Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. Nature 483, 47–52 (2012).

    Article  CAS  Google Scholar 

  21. Cardin, J.A. J. Physiol. Paris published online: doi:10.1016/j.jphysparis.2011.09.005 (19 September 2011).

  22. Hartmann, A.M. & Nothwang, H.G. BMC Res. Notes 4, 526 (2011).

    Article  CAS  Google Scholar 

  23. Pouille, F. & Scanziani, M. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

  24. Ascoli, G.A., Gasparini, S., Medinilla, V. & Migliore, M. J. Neurosci. 30, 6434–6442 (2010).

    Article  CAS  Google Scholar 

  25. Jin, X., Huguenard, J.R. & Prince, D.A. J. Neurophysiol. 93, 2117–2126 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Bolam (Oxford University) for resources, and K. Deisseroth (Stanford University) and E. Boyden (Massachusetts Institute of Technology) for DNA constructs. We also thank G. Miesenböck, D. Kätzel and B. Richards for comments. Supported by a grant from the Medical Research Council (G0601503); research leading to these results received funding under the European Community's Seventh Framework Programme (FP7/2007-2013).

Author information

Authors and Affiliations

Authors

Contributions

J.V.R. and C.J.A. designed the research. J.V.R., T.J.E. and L.K. performed the experiments. J.V.R. and C.J.A. analyzed the data. J.V.R. and C.J.A. wrote the paper.

Corresponding author

Correspondence to Colin J Akerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 3640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raimondo, J., Kay, L., Ellender, T. et al. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15, 1102–1104 (2012). https://doi.org/10.1038/nn.3143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing