Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex

A Corrigendum to this article was published on 21 November 2014

This article has been updated

Abstract

How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one-amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1Sema− mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of TAOK2 and activated TAOK2 in cultured neurons and the developing cerebral cortex.
Figure 2: TAOK2 downregulation or overexpression affects the differentiation of isolated cortical neurons.
Figure 3: TAOK2 downregulation or overexpression affects basal dendrite arborization and callosal axon projection in the developing cortex.
Figure 4: TAOK2 interacts with Nrp1 to modulate TAOK2 phosphorylation.
Figure 5: TAOK2 and Sema3A modulate the activity of JNK1.
Figure 6: TAOK2 counteracts the dendritic arborization deficit in neurons expressing a deficient receptor for Nrp1 or with Nrp1 downregulation.
Figure 7: Activated JNK1 ameliorates deficient basal dendrite formation after TAOK2 downregulation.

Similar content being viewed by others

Change history

  • 09 July 2012

    In the version of this article initially published, the scale bar length for Figure 7d was not given. The bar represents 10 μm. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).

    Article  CAS  Google Scholar 

  2. Mukaetova-Ladinska, E.B., Arnold, H., Jaros, E., Perry, R. & Perry, E. Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol. Appl. Neurobiol. 30, 615–623 (2004).

    Article  CAS  Google Scholar 

  3. Raymond, G.V., Bauman, M.L. & Kemper, T.L. Hippocampus in autism: a Golgi analysis. Acta Neuropathol. 91, 117–119 (1996).

    Article  CAS  Google Scholar 

  4. Larkman, A.U. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J. Comp. Neurol. 306, 332–343 (1991).

    Article  CAS  Google Scholar 

  5. Chen, Z. & Cobb, M.H. Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2. J. Biol. Chem. 276, 16070–16075 (2001).

    Article  CAS  Google Scholar 

  6. Chen, Z. et al. TAO (thousand-and-one amino acid) protein kinases mediate signaling from carbachol to p38 mitogen-activated protein kinase and ternary complex factors. J. Biol. Chem. 278, 22278–22283 (2003).

    Article  CAS  Google Scholar 

  7. Weiss, L.A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    Article  CAS  Google Scholar 

  8. McCarthy, S.E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat. Genet. 41, 1223–1227 (2009).

    Article  CAS  Google Scholar 

  9. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  Google Scholar 

  10. Chen, Z., Hutchison, M. & Cobb, M.H. Isolation of the protein kinase TAO2 and identification of its mitogen-activated protein kinase/extracellular signal-regulated kinase kinase binding domain. J. Biol. Chem. 274, 28803–28807 (1999).

    Article  CAS  Google Scholar 

  11. Moore, T.M. et al. PSK, a novel STE20-like kinase derived from prostatic carcinoma that activates the c-Jun N-terminal kinase mitogen-activated protein kinase pathway and regulates actin cytoskeletal organization. J. Biol. Chem. 275, 4311–4322 (2000).

    Article  CAS  Google Scholar 

  12. Yasuda, S. et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 56, 456–471 (2007).

    Article  CAS  Google Scholar 

  13. Zihni, C. et al. Prostate-derived sterile 20-like kinase 1-alpha induces apoptosis. JNK- and caspase-dependent nuclear localization is a requirement for membrane blebbing. J. Biol. Chem. 282, 6484–6493 (2007).

    Article  CAS  Google Scholar 

  14. Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 5, 45–57 (2003).

    Article  CAS  Google Scholar 

  15. Tran, T.S. et al. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462, 1065–1069 (2009).

    Article  CAS  Google Scholar 

  16. Chen, G. et al. Semaphorin-3A guides radial migration of cortical neurons during development. Nat. Neurosci. 11, 36–44 (2008).

    Article  Google Scholar 

  17. Fenstermaker, V., Chen, Y., Ghosh, A. & Yuste, R. Regulation of dendritic length and branching by semaphorin 3A. J. Neurobiol. 58, 403–412 (2004).

    Article  CAS  Google Scholar 

  18. Bradke, F. & Dotti, C.G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).

    Article  CAS  Google Scholar 

  19. King, I. et al. Drosophila tao controls mushroom body development and ethanol-stimulated behavior through par-1. J. Neurosci. 31, 1139–1148 (2011).

    Article  CAS  Google Scholar 

  20. Barnes, A.P., Solecki, D. & Polleux, F. New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr. Opin. Neurobiol. 18, 44–52 (2008).

    Article  CAS  Google Scholar 

  21. Witte, H. & Bradke, F. The role of the cytoskeleton during neuronal polarization. Curr. Opin. Neurobiol. 18, 479–487 (2008).

    Article  CAS  Google Scholar 

  22. Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat. Rev. Neurosci. 8, 194–205 (2007).

    Article  CAS  Google Scholar 

  23. de Anda, F.C., Meletis, K., Ge, X., Rei, D. & Tsai, L.H. Centrosome motility is essential for initial axon formation in the neocortex. J. Neurosci. 30, 10391–10406 (2010).

    Article  Google Scholar 

  24. Zhou, T. et al. Crystal structure of the TAO2 kinase domain: activation and specificity of a Ste20p MAP3K. Structure 12, 1891–1900 (2004).

    Article  CAS  Google Scholar 

  25. Romand, S., Wang, Y., Toledo-Rodriguez, M. & Markram, H. Morphological development of thick-tufted layer V pyramidal cells in the rat somatosensory cortex. Front. Neuroanat. 5, 5 (2011).

    Article  Google Scholar 

  26. Polleux, F. & Snider, W. Initiating and growing an axon. Cold Spring Harb. Perspect. Biol. 2, a001925 (2010).

    Article  CAS  Google Scholar 

  27. Huangfu, W.C., Omori, E., Akira, S., Matsumoto, K. & Ninomiya-Tsuji, J. Osmotic stress activates the TAK1-JNK pathway while blocking TAK1-mediated NF-κB activation: TAO2 regulates TAK1 pathways. J. Biol. Chem. 281, 28802–28810 (2006).

    Article  CAS  Google Scholar 

  28. Ben-Zvi, A. et al. Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signaling in embryonic DRG neurons. J. Neurochem. 96, 585–597 (2006).

    Article  CAS  Google Scholar 

  29. Tararuk, T. et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265–277 (2006).

    Article  CAS  Google Scholar 

  30. Bjorkblom, B. et al. Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J. Neurosci. 25, 6350–6361 (2005).

    Article  Google Scholar 

  31. Oliva, A.A. Jr., Atkins, C.M., Copenagle, L. & Banker, G.A. Activated c-Jun N-terminal kinase is required for axon formation. J. Neurosci. 26, 9462–9470 (2006).

    Article  CAS  Google Scholar 

  32. Barnat, M. et al. Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J. Neurosci. 30, 7804–7816 (2010).

    Article  CAS  Google Scholar 

  33. Rosso, S.B., Sussman, D., Wynshaw-Boris, A. & Salinas, P.C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat. Neurosci. 8, 34–42 (2005).

    Article  CAS  Google Scholar 

  34. Chang, L., Jones, Y., Ellisman, M.H., Goldstein, L.S. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521–533 (2003).

    Article  CAS  Google Scholar 

  35. Jeanneteau, F., Deinhardt, K., Miyoshi, G., Bennett, A.M. & Chao, M.V. The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat. Neurosci. 13, 1373–1379 (2010).

    Article  CAS  Google Scholar 

  36. Lei, K. et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol. Cell Biol. 22, 4929–4942 (2002).

    Article  CAS  Google Scholar 

  37. Yamasaki, T. et al. Stress-activated protein kinase MKK7 regulates axon elongation in the developing cerebral cortex. J. Neurosci. 31, 16872–16883 (2011).

    Article  CAS  Google Scholar 

  38. Jan, Y.N. & Jan, L.Y. Branching out: mechanisms of dendritic arborization. Nat. Rev. Neurosci. 11, 316–328 (2010).

    Article  CAS  Google Scholar 

  39. Baas, P.W., Black, M.M. & Banker, G.A. Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J. Cell Biol. 109, 3085–3094 (1989).

    Article  CAS  Google Scholar 

  40. Kwan, A.C., Dombeck, D.A. & Webb, W.W. Polarized microtubule arrays in apical dendrites and axons. Proc. Natl. Acad. Sci. USA 105, 11370–11375 (2008).

    Article  CAS  Google Scholar 

  41. Horton, A.C. et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757–771 (2005).

    Article  CAS  Google Scholar 

  42. Shelly, M. et al. Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron 71, 433–446 (2011).

    Article  CAS  Google Scholar 

  43. Nishiyama, M. et al. Semaphorin 3A induces CaV2.3 channel-dependent conversion of axons to dendrites. Nat. Cell Biol. 13, 676–685 (2011).

    Article  Google Scholar 

  44. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000).

    Article  CAS  Google Scholar 

  45. Geschwind, D.H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  Google Scholar 

  46. Just, M.A., Cherkassky, V.L., Keller, T.A., Kana, R.K. & Minshew, N.J. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 17, 951–961 (2007).

    Article  Google Scholar 

  47. Walsh, C.A., Morrow, E.M. & Rubenstein, J.L. Autism and brain development. Cell 135, 396–400 (2008).

    Article  CAS  Google Scholar 

  48. Weiss, L.A., Arking, D.E., Daly, M.J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    Article  CAS  Google Scholar 

  49. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  Google Scholar 

  50. Kelleher, R.J. III & Bear, M.F. The autistic neuron: troubled translation? Cell 135, 401–406 (2008).

    Article  CAS  Google Scholar 

  51. Mao, Y. et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136, 1017–1031 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mungenast, E.J. Kwon, M.H. Cobb (University of Texas Southwestern Medical Center) and Y. Gotoh (University of Tokyo) for critical reading of the manuscript, providing vectors, antibodies, and suggestions. The Simons Foundation Autism Research Initiative supported this work. F.C.d.A. is supported by a postdoctoral fellowship from the Simons Foundation (Simons Center for the Social Brain, Massachusetts Institute of Technology). US National Institutes of Health grant R01 MH59199 to A.L.K. and D.D.G. supported this work. L.-H.T., A.L.K. and D.D.G. are investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

This study was designed, directed and coordinated by F.C.d.A. and L.-H.T. L.-H.T., as the principal investigator, provided conceptual and technical guidance for all aspects of the project. F.C.d.A. planned and performed the in utero electroporations and analyzed the data with A.L.R. and O.D. F.C.d.A. performed and analyzed the immunohistochemistry experiments. K.M. generated and characterized the shRNA constructs. K.M., A.L.R. and D.R. contributed to the neuronal cultures. T.T. performed and analyzed the data from the neuronal cultures of Nrp1Sema− mice. A.L.R., O.D., J.G. and R.M. contributed to the biochemistry experiments. T.S. generated the lentiviral shRNA construct and produced the virus particles. D.D.G. and A.L.K. provided the Nrp1Sema− mouse brains and suggested and commented on the design of the experiments. The manuscript was written by F.C.d.A. and L.-H.T. and commented on by all authors.

Corresponding author

Correspondence to Li-Huei Tsai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 4521 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderon de Anda, F., Rosario, A., Durak, O. et al. Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 15, 1022–1031 (2012). https://doi.org/10.1038/nn.3141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing