Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Release probability of hippocampal glutamatergic terminals scales with the size of the active zone

A Corrigendum to this article was published on 29 December 2015

This article has been updated

Abstract

Cortical synapses have structural, molecular and functional heterogeneity; our knowledge regarding the relationship between their ultrastructural and functional parameters is still fragmented. Here we asked how the neurotransmitter release probability and presynaptic [Ca2+] transients relate to the ultrastructure of rat hippocampal glutamatergic axon terminals. Two-photon Ca2+ imaging–derived optical quantal analysis and correlated electron microscopic reconstructions revealed a tight correlation between the release probability and the active-zone area. Peak amplitude of [Ca2+] transients in single boutons also positively correlated with the active-zone area. Freeze-fracture immunogold labeling revealed that the voltage-gated calcium channel subunit Cav2.1 and the presynaptic protein Rim1/2 are confined to the active zone and their numbers scale linearly with the active-zone area. Gold particles labeling Cav2.1 were nonrandomly distributed in the active zones. Our results demonstrate that the numbers of several active-zone proteins, including presynaptic calcium channels, as well as the number of docked vesicles and the release probability, scale linearly with the active-zone area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological diversity of glutamatergic axon terminals in the CA3 region of the rat hippocampus.
Figure 2: The number of docked vesicles correlates linearly with active-zone size.
Figure 3: Determining the release probability of axon terminals with optical quantal analysis.
Figure 4: Post hoc ultrastructural analysis of synapses after two-photon imaging.
Figure 5: Measurement of volume-averaged [Ca2+] transients in CA3 pyramidal cell local axon terminals.
Figure 6: Cav2.1 subunit was confined to the active zone of presynaptic axon terminals in the stratum oriens of the hippocampal CA3 area.
Figure 7: The number of Cav2.1 subunits and Rim1/2 proteins correlates with the active-zone area.
Figure 8: Nonrandom distribution of the Cav2.1 subunits within the active zones.

Similar content being viewed by others

Change history

  • 23 November 2015

    In the version of this article initially published, Figure 7h presented data from rat 2 but the corresponding legend gave statistics for rat 1. The legend originally read, “Density of gold particles labeling the Cav2.1 subunit within presynaptic active zones (mean ± s.d. = 395.8 ± 154.8 gold μm−2, n = 34 in rat 1) and in the surrounding extrasynaptic axonal plasma membrane (mean ± s.d. = 1.6 ± 2.4 gold μm−2, n = 32 in rat 1) in comparison with the background labeling calculated on E-face plasma membranes (mean ± s.d. = 0.6 ± 2.3 gold μm−2, n = 39; Psynaptic < 0.01, Pextrasynaptic = 0.73).” It has been changed to give the statistics for rat 2: “Density of gold particles labeling the Cav2.1 subunit within presynaptic active zones (mean ± s.d. = 293.8 ± 122 gold μm−2, n = 49 in rat 2) and in the surrounding extrasynaptic axonal plasma membrane (mean ± s.d. = 2.8 ± 4.0 gold μm−2, n = 49 in rat 2) in comparison with the background labeling calculated on E-face plasma membranes (mean ± s.d. = 0.33 ± 1.2 gold μm−2, n = 57; Psynaptic < 0.01, Pextrasynaptic = 0.06).” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  2. Shepherd, G.M. & Harris, K.M. Three-dimensional structure and composition of CA3–CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310 (1998).

    Article  CAS  Google Scholar 

  3. Atwood, H.L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002).

    Article  CAS  Google Scholar 

  4. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).

    Article  CAS  Google Scholar 

  5. Racca, C., Stephenson, F.A., Streit, P., Roberts, J.D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  Google Scholar 

  6. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  Google Scholar 

  7. Nimchinsky, E.A., Yasuda, R., Oertner, T.G. & Svoboda, K. The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J. Neurosci. 24, 2054–2064 (2004).

    Article  CAS  Google Scholar 

  8. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  Google Scholar 

  9. Harris, K.M. & Stevens, J.K. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  10. Fields, R.D. & Ellisman, M.H. Synaptic morphology and differences in sensitivity. Science 228, 197–199 (1985).

    Article  CAS  Google Scholar 

  11. Atwood, H.L. & Marin, L. Ultrastructure of synapses with different transmitter-releasing characteristics on motor axon terminals of a crab, Hyas areneas. Cell Tissue Res. 231, 103–115 (1983).

    Article  CAS  Google Scholar 

  12. Propst, J.W. & Ko, C.P. Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions. J. Neurosci. 7, 3654–3664 (1987).

    Article  CAS  Google Scholar 

  13. Korn, H., Mallet, A., Triller, A. & Faber, D.S. Transmission at a central inhibitory synapse. II. quantal description of release, with a physical correlate for binomial n. J. Neurophysiol. 48, 679–707 (1982).

    Article  CAS  Google Scholar 

  14. Murthy, V.N., Schikorski, T., Stevens, C.F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  Google Scholar 

  15. Branco, T., Marra, V. & Staras, K. Examining size-strength relationships at hippocampal synapses using an ultrastructural measurement of synaptic release probability. J. Struct. Biol. 172, 203–210 (2010).

    Article  Google Scholar 

  16. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  Google Scholar 

  17. Thomson, A.M. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J. Physiol. (Lond.) 502, 131–147 (1997).

    Article  CAS  Google Scholar 

  18. Koester, H.J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  Google Scholar 

  19. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. (Lond.) 531, 807–826 (2001).

    Article  CAS  Google Scholar 

  20. Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P. & Nusser, Z. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J. Physiol. (Lond.) 542, 193–210 (2002).

    Article  CAS  Google Scholar 

  21. Xu-Friedman, M.A., Harris, K.M. & Regehr, W.G. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672 (2001).

    Article  CAS  Google Scholar 

  22. Oertner, T.G., Sabatini, B.L., Nimchinsky, E.A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nat. Neurosci. 5, 657–664 (2002).

    Article  CAS  Google Scholar 

  23. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  Google Scholar 

  24. Bollmann, J.H., Sakmann, B. & Borst, J.G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  CAS  Google Scholar 

  25. Bucurenciu, I., Bischofberger, J. & Jonas, P. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse. Nat. Neurosci. 13, 19–21 (2010).

    Article  CAS  Google Scholar 

  26. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  27. Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195, 481–492 (1968).

    Article  CAS  Google Scholar 

  28. Llinas, R., Steinberg, I.Z. & Walton, K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33, 323–351 (1981).

    Article  CAS  Google Scholar 

  29. del Castillo, J. & Katz, B. Quantal components of the end-plate potential. J. Physiol. (Lond.) 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  30. Koester, H.J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. (Lond.) 529, 625–646 (2000).

    Article  CAS  Google Scholar 

  31. Wu, L.G. & Saggau, P. Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3–CA1 synapses of the hippocampus. J. Neurosci. 14, 5613–5622 (1994).

    Article  CAS  Google Scholar 

  32. Wheeler, D.B., Randall, A. & Tsien, R.W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111 (1994).

    Article  CAS  Google Scholar 

  33. Reid, C.A., Clements, J.A. & Bekkers, J.M. Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J. Neurosci. 17, 2738–2745 (1997).

    Article  CAS  Google Scholar 

  34. Masugi-Tokita, M. & Shigemoto, R. High-resolution quantitative visualization of glutamate and GABA receptors at central synapses. Curr. Opin. Neurobiol. 17, 387–393 (2007).

    Article  CAS  Google Scholar 

  35. Hagiwara, A., Fukazawa, Y., Deguchi-Tawarada, M., Ohtsuka, T. & Shigemoto, R. Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. J. Comp. Neurol. 489, 195–216 (2005).

    Article  CAS  Google Scholar 

  36. Lisman, J. Long-term potentiation: outstanding questions and attempted synthesis. Phil. Trans. R. Soc. Lond. B 358, 829–842 (2003).

    Article  CAS  Google Scholar 

  37. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).

    Article  CAS  Google Scholar 

  38. Eggermann, E., Bucurenciu, I., Goswami, S.P. & Jonas, P. Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat. Rev. Neurosci. 13, 7–21 (2012).

    Article  CAS  Google Scholar 

  39. Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M. & Jonas, P. Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57, 536–545 (2008).

    Article  CAS  Google Scholar 

  40. Mennerick, S. & Matthews, G. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17, 1241–1249 (1996).

    Article  CAS  Google Scholar 

  41. Christie, J.M., Chiu, D.N. & Jahr, C.E. Ca2+-dependent enhancement of release by subthreshold somatic depolarization. Nat. Neurosci. 14, 62–68 (2011).

    Article  CAS  Google Scholar 

  42. Fedchyshyn, M.J. & Wang, L.Y. Developmental transformation of the release modality at the calyx of Held synapse. J. Neurosci. 25, 4131–4140 (2005).

    Article  CAS  Google Scholar 

  43. Meinrenken, C.J., Borst, J.G. & Sakmann, B. Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  Google Scholar 

  44. Ohana, O. & Sakmann, B. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. J. Physiol. (Lond.) 513, 135–148 (1998).

    Article  CAS  Google Scholar 

  45. Llinas, R., Sugimori, M. & Silver, R.B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    Article  CAS  Google Scholar 

  46. DiGregorio, D.A., Peskoff, A. & Vergara, J.L. Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J. Neurosci. 19, 7846–7859 (1999).

    Article  CAS  Google Scholar 

  47. Frank, T., Khimich, D., Neef, A. & Moser, T. Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. Proc. Natl. Acad. Sci. USA 106, 4483–4488 (2009).

    Article  CAS  Google Scholar 

  48. Liu, K.S. et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011).

    Article  CAS  Google Scholar 

  49. Kulik, A. et al. Immunocytochemical localization of the a1A subunit of the P/Q-type calcium channel in the rat cerebellum. Eur. J. Neurosci. 19, 2169–2178 (2004).

    Article  Google Scholar 

  50. Tanaka, J. et al. Number and density of AMPA receptors in single synapses in immature cerebellum. J. Neurosci. 25, 799–807 (2005).

    Article  CAS  Google Scholar 

  51. Gulyas, A.I. et al. Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J. Neurosci. 30, 15134–15145 (2010).

    Article  CAS  Google Scholar 

  52. Lorincz, A., Rozsa, B., Katona, G., Vizi, E.S. & Tamas, G. Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells. Proc. Natl. Acad. Sci. USA 104, 1033–1038 (2007).

    Article  Google Scholar 

  53. Maravall, M., Mainen, Z.F., Sabatini, B.L. & Svoboda, K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667 (2000).

    Article  CAS  Google Scholar 

  54. Lorincz, A. & Nusser, Z. Molecular identity of dendritic voltage-gated sodium channels. Science 328, 906–909 (2010).

    Article  CAS  Google Scholar 

  55. Kulik, A. et al. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J. Neurosci. 26, 4289–4297 (2006).

    Article  CAS  Google Scholar 

  56. Miyazaki, T. et al. Cav2.1 in cerebellar Purkinje cells regulates competitive excitatory synaptic wiring, cell survival, and cerebellar biochemical compartmentalization. J. Neurosci. 32, 1311–1328 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.H. and A.L. are funded by Janos Bolyai Scholarships of the Hungarian Academy of Sciences. Z.N. is supported by Wellcome Trust Equipment (083484/Z/07/Z) and Project Grants (090197/Z/09/Z; 094513/Z/10/Z), a European Research Council Advanced Grant, and a Hungarian National Office for Research and Technology-French National Research Agency TéT Fund (NKTH-Neurogen). B.R. was supported by a GOP grant (1.1.1-08/1-2008-0085). A.K. is supported by a Deutsche Forschungsgemeinschaft (SFB 780) grant. We thank N. Suzuki (Mie University, Japan) for providing Cav2.1−/− mice, A. Unger for helping with the Cav2.1−/− replica labeling, E. Dobai and D. Ronaszéki for technical assistance, M. Sümegi for his help with the modeling, members of Synaptic Systems GmbH for providing the rabbit anti-Cav2.1 antibody, E. Neher and M. Eyre for their comments on the manuscript, and H. Koester for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

N.H. performed all in vitro Ca2+ measurements and post hoc light- and electron microscopy analysis of the imaged structures. A.L. performed SDS-FRL for SNAP-25, Cav2.1 and Rim1/2, quantitatively analyzed reactions and performed simulations. G.K. developed the software. B.R. designed and built the two-photon microscope. A.K. performed SDS-FRL reactions for Cav2.1 in Cav2.1+/− and Cav2.1−/− mice. M.W. developed the guinea pig anti-Cav2.1 antibody. N.H. and Z.N. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Zoltan Nusser.

Ethics declarations

Competing interests

B.R. and G.K. are the owners of Femtonics Ltd.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holderith, N., Lorincz, A., Katona, G. et al. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15, 988–997 (2012). https://doi.org/10.1038/nn.3137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing