Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration

Abstract

Activation of innate immune receptors by host-derived factors exacerbates CNS damage, but the identity of these factors remains elusive. We uncovered an unconventional role for the microRNA let-7, a highly abundant regulator of gene expression in the CNS, in which extracellular let-7 activates the RNA-sensing Toll-like receptor (TLR) 7 and induces neurodegeneration through neuronal TLR7. Cerebrospinal fluid (CSF) from individuals with Alzheimer's disease contains increased amounts of let-7b, and extracellular introduction of let-7b into the CSF of wild-type mice by intrathecal injection resulted in neurodegeneration. Mice lacking TLR7 were resistant to this neurodegenerative effect, but this susceptibility to let-7 was restored in neurons transfected with TLR7 by intrauterine electroporation of Tlr7−/− fetuses. Our results suggest that microRNAs can function as signaling molecules and identify TLR7 as an essential element in a pathway that contributes to the spread of CNS damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: let-7b induces the release of TNF-α from microglia and macrophages via TLR7.
Figure 2: Expression of TLR7 in the CNS.
Figure 3: Extracellular let-7 induces neurodegeneration via TLR7, MyD88 and caspase-3.
Figure 4: let-7 released from dying neurons induces neurodegeneration in vitro.
Figure 5: Intrathecal administration of let-7 causes TLR7-dependent neurodegeneration in the presence or absence of microglia.
Figure 6: Reconstitution of TLR7 restores the neurodegenerative effect of let-7.
Figure 7: CSF of Alzheimer's disease patients contains increased amounts of let-7b.

Similar content being viewed by others

References

  1. Tahara, K. et al. Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129, 3006–3019 (2006).

    Article  Google Scholar 

  2. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  Google Scholar 

  3. Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33, 2987–2997 (2003).

    Article  CAS  Google Scholar 

  4. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  Google Scholar 

  5. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  Google Scholar 

  6. Hornung, V. et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  Google Scholar 

  7. Olson, J.K. & Miller, S.D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916–3924 (2004).

    Article  CAS  Google Scholar 

  8. Liu, T., Xu, Z.Z., Park, C.K., Berta, T. & Ji, R.R. Toll-like receptor 7 mediates pruritus. Nat. Neurosci. 13, 1460–1462 (2010).

    Article  CAS  Google Scholar 

  9. Owens, T. Toll-like receptors in neurodegeneration. Curr. Top. Microbiol. Immunol. 336, 105–120 (2009).

    CAS  PubMed  Google Scholar 

  10. Eacker, S.M., Dawson, T.M. & Dawson, V.L. Understanding microRNAs in neurodegeneration. Nat. Rev. Neurosci. 10, 837–841 (2009).

    Article  CAS  Google Scholar 

  11. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  12. Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nat. Genet. 38, 1375–1377 (2006).

    Article  CAS  Google Scholar 

  13. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  Google Scholar 

  14. Roush, S. & Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell 39, 133–144 (2010).

    Article  CAS  Google Scholar 

  16. Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  17. Forsbach, A. et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J. Immunol. 180, 3729–3738 (2008).

    Article  CAS  Google Scholar 

  18. Lehnardt, S. et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4–dependent pathway. Proc. Natl. Acad. Sci. USA 100, 8514–8519 (2003).

    Article  CAS  Google Scholar 

  19. Butchi, N.B., Pourciau, S., Du, M., Morgan, T.W. & Peterson, K.E. Analysis of the neuroinflammatory response to TLR7 stimulation in the brain: comparison of multiple TLR7 and/or TLR8 agonists. J. Immunol. 180, 7604–7612 (2008).

    Article  CAS  Google Scholar 

  20. Chen, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008).

    Article  CAS  Google Scholar 

  21. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  Google Scholar 

  22. Lehnardt, S. et al. A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J. Neurosci. 28, 2320–2331 (2008).

    Article  CAS  Google Scholar 

  23. Rybak, A. et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat. Cell Biol. 11, 1411–1420 (2009).

    Article  CAS  Google Scholar 

  24. Kreutzberg, G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996).

    Article  CAS  Google Scholar 

  25. Grathwohl, S.A. et al. Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361–1363 (2009).

    Article  CAS  Google Scholar 

  26. Stein, C.A. et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 38, e3 (2010).

    Article  CAS  Google Scholar 

  27. Cogswell, J.P. et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis. 14, 27–41 (2008).

    Article  CAS  Google Scholar 

  28. Baraniskin, A. et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117, 3140–3146 (2011).

    Article  CAS  Google Scholar 

  29. Chiang, H.R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    Article  CAS  Google Scholar 

  30. Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21, 1469–1477 (2005).

    Article  Google Scholar 

  31. Ghidoni, R. et al. Cerebrospinal fluid biomarkers for Alzheimer's disease: the present and the future. Neurodegener. Dis. 8, 413–420 (2011).

    Article  CAS  Google Scholar 

  32. Cortez, M.A. & Calin, G.A. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 9, 703–711 (2009).

    Article  CAS  Google Scholar 

  33. Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).

    Article  CAS  Google Scholar 

  34. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    Article  Google Scholar 

  35. Kauppinen, S., Vester, B. & Wengel, J. Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handb. Exp. Pharmacol. 173, 405–422 (2006).

    Article  CAS  Google Scholar 

  36. Ginsberg, S.D., Crino, P.B., Lee, V.M., Eberwine, J.H. & Trojanowski, J.Q. Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Ann. Neurol. 41, 200–209 (1997).

    Article  CAS  Google Scholar 

  37. Scaffidi, P., Misteli, T. & Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  Google Scholar 

  38. Tang, S.C. et al. Toll-like receptor 4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp. Neurol. 213, 114–121 (2008).

    Article  CAS  Google Scholar 

  39. Préhaud, C., Megret, F., Lafage, M. & Lafon, M. Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J. Virol. 79, 12893–12904 (2005).

    Article  Google Scholar 

  40. Walter, S. et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer's disease. Cell. Physiol. Biochem. 20, 947–956 (2007).

    Article  CAS  Google Scholar 

  41. Aliprantis, A.O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor 2. Science 285, 736–739 (1999).

    Article  CAS  Google Scholar 

  42. Lehnardt, S. et al. TLR2 and caspase-8 are essential for group B Streptococcus-induced apoptosis in microglia. J. Immunol. 179, 6134–6143 (2007).

    Article  CAS  Google Scholar 

  43. Trang, P. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 29, 1580–1587 (2010).

    Article  CAS  Google Scholar 

  44. Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  Google Scholar 

  45. Roberson, S.M. & Walker, W.S. Immortalization of cloned mouse splenic macrophages with a retrovirus containing the v-raf/mil and v-myc oncogenes. Cell. Immunol. 116, 341–351 (1988).

    Article  CAS  Google Scholar 

  46. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  Google Scholar 

  47. Hoffmann, O. et al. TLR2 mediates neuroinflammation and neuronal damage. J. Immunol. 178, 6476–6481 (2007).

    Article  CAS  Google Scholar 

  48. Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J. 22, 4190–4201 (2003).

    Article  CAS  Google Scholar 

  49. Kroh, E.M., Parkin, R.K., Mitchell, P.S. & Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50, 298–301 (2010).

    Article  CAS  Google Scholar 

  50. Hinz, M. et al. Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90. J. Biol. Chem. 282, 32311–32319 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Brinkmann (Helmholtz Centre for Infection Research) for providing immortalized bone marrow–derived macrophages. We also thank C. Schipke, A.-M. Rohde, D. Lüdecke and J. Schüler for helpful discussions and excellent technical assistance. This work was supported by Deutsche Forschungsgemeinschaft SFB-TRR43/A1 and NeuroCure Exc 257 (to S.L.), SFB-TRR43/A6 (to F.L.H.), and by SFB665/A2 and GRK1123 (to F.G.W.).

Author information

Authors and Affiliations

Authors

Contributions

S.L., H.L.P., F.G.W. and E.S. conceived the study and wrote the manuscript. R.K., R.V., O.N., R.N., F.L.H. and D.G. planned the experiments. S.M.L., C.K., B.P., K.D., K.R., J.B., T.T., M.H., G.E., D.K., P.H., E.F., A.R., D.N. and O.P. planned and carried out the experiments.

Corresponding author

Correspondence to Seija Lehnardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1 and 2 (PDF 5606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, S., Krüger, C., Park, B. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15, 827–835 (2012). https://doi.org/10.1038/nn.3113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing