Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons

Abstract

Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here we show that repeated exposure to cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. Further, we show, using viral-mediated gene transfer, that overexpression of a dominant negative mutant of Rac1 or local knockout of Rac1 is sufficient to increase the density of immature dendritic spines on nucleus accumbens neurons, whereas overexpression of a constitutively active Rac1 or light activation of a photoactivatable form of Rac1 blocks the ability of repeated cocaine exposure to produce this effect. Downregulation of Rac1 activity likewise promotes behavioral responses to cocaine exposure, with activation of Rac1 producing the opposite effect. These findings establish that Rac1 signaling mediates structural and behavioral plasticity in response to cocaine exposure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine regulation of Rac1 signaling in NAc.
Figure 2: Rac1 signaling regulates behavioral responses to cocaine.
Figure 3: Temporal regulation of Rac1 signaling regulates behavioral responses to cocaine.
Figure 4: Decreased Rac1 signaling mediates induction of NAc spines by cocaine.

Similar content being viewed by others

References

  1. Garey, L.J. et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol. Neurosurg. Psychiatry 65, 446–453 (1998).

    Article  CAS  Google Scholar 

  2. Russo, S.J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2010).

    Article  CAS  Google Scholar 

  3. Soetanto, A. et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch. Gen. Psychiatry 67, 448–457 (2010).

    Article  Google Scholar 

  4. Hyman, S.E., Malenka, R.C. & Nestler, E.J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

    Article  CAS  Google Scholar 

  5. Robinson, T.E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47, 33–46 (2004).

    Article  CAS  Google Scholar 

  6. Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561–572 (2009).

    Article  CAS  Google Scholar 

  7. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  Google Scholar 

  8. Deng, J.V. et al. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat. Neurosci. 13, 1128–1136 (2010).

    Article  CAS  Google Scholar 

  9. LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13, 1137–1143 (2010).

    Article  CAS  Google Scholar 

  10. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  CAS  Google Scholar 

  11. Norrholm, S.D. et al. Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116, 19–22 (2003).

    Article  CAS  Google Scholar 

  12. Pulipparacharuvil, S. et al. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron 59, 621–633 (2008).

    Article  CAS  Google Scholar 

  13. Russo, S.J. et al. Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J. Neurosci. 29, 3529–3537 (2009).

    Article  CAS  Google Scholar 

  14. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  Google Scholar 

  15. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  Google Scholar 

  16. Toda, S., Shen, H.W., Peters, J., Cagle, S. & Kalivas, P.W. Cocaine increases actin cycling: effects in the reinstatement model of drug seeking. J. Neurosci. 26, 1579–1587 (2006).

    Article  CAS  Google Scholar 

  17. Shen, H.W. et al. Altered dendritic spine plasticity in cocaine-withdrawn rats. J. Neurosci. 29, 2876–2884 (2009).

    Article  CAS  Google Scholar 

  18. Toda, S., Shen, H. & Kalivas, P.W. Inhibition of actin polymerization prevents cocaine-induced changes in spine morphology in the nucleus accumbens. Neurotox. Res. 18, 410–415 (2010).

    Article  CAS  Google Scholar 

  19. Halpain, S. Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 23, 141–146 (2000).

    Article  CAS  Google Scholar 

  20. Penzes, P. & Jones, K.A. Dendritic spine dynamics—a key role for kalirin-7. Trends Neurosci. 31, 419–427 (2008).

    Article  CAS  Google Scholar 

  21. Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci. 13, 327–332 (2010).

    Article  CAS  Google Scholar 

  22. Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex 10, 927–938 (2000).

    Article  CAS  Google Scholar 

  23. Tashiro, A. & Yuste, R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol. Cell Neurosci. 26, 429–440 (2004).

    Article  CAS  Google Scholar 

  24. Oh, D. et al. Regulation of synaptic Rac1 activity, long-term potentiation maintenance, and learning and memory by BCR and ABR Rac GTPase-activating proteins. J. Neurosci. 30, 14134–14144 (2010).

    Article  CAS  Google Scholar 

  25. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    Article  CAS  Google Scholar 

  26. Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998).

    Article  CAS  Google Scholar 

  27. Edwards, D.C., Sanders, L.C., Bokoch, G.M. & Gill, G.N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1, 253–259 (1999).

    Article  CAS  Google Scholar 

  28. Shirazi Fard, S., Kele, J., Vilar, M., Paratcha, G. & Ledda, F. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth. PLoS ONE 5, e9647 (2010).

    Article  Google Scholar 

  29. Miyamoto, Y., Yamauchi, J., Tanoue, A., Wu, C. & Mobley, W.C. TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc. Natl. Acad. Sci. USA 103, 10444–10449 (2006).

    Article  CAS  Google Scholar 

  30. Nobes, C.D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244 (1999).

    Article  CAS  Google Scholar 

  31. Marinissen, M.J. et al. The small GTP-binding protein RhoA regulates c-Jun by a ROCK-JNK signaling axis. Mol. Cell 14, 29–41 (2004).

    Article  CAS  Google Scholar 

  32. Chen, L., Melendez, J., Campbell, K., Kuan, C.Y. & Zheng, Y. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev. Biol. 325, 162–170 (2009).

    Article  CAS  Google Scholar 

  33. Gu, Y. et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302, 445–449 (2003).

    Article  CAS  Google Scholar 

  34. Wu, Y.I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  Google Scholar 

  35. Lobo, M.K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).

    Article  CAS  Google Scholar 

  36. Kim, W.Y., Shin, S.R., Kim, S., Jeon, S. & Kim, J.H. Cocaine regulates ezrin-radixin-moesin proteins and RhoA signaling in the nucleus accumbens. Neuroscience 163, 501–505 (2009).

    Article  CAS  Google Scholar 

  37. Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 2, 880–888 (2001).

    Article  CAS  Google Scholar 

  38. Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746 (2004).

    Article  CAS  Google Scholar 

  39. Bosco, E.E., Mulloy, J.C. & Zheng, Y. Rac1 GTPase: a “Rac” of all trades. Cell Mol. Life Sci. 66, 370–374 (2009).

    Article  CAS  Google Scholar 

  40. Kalivas, P.W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45, 647–650 (2005).

    Article  CAS  Google Scholar 

  41. Schmidt, H.D. & Pierce, R.C. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann. NY Acad. Sci. 1187, 35–75 (2010).

    Article  CAS  Google Scholar 

  42. Thomas, M.J., Kalivas, P.W. & Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol. 154, 327–342 (2008).

    Article  CAS  Google Scholar 

  43. Wolf, M.E. The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci. 33, 391–398 (2010).

    Article  CAS  Google Scholar 

  44. Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217–1223 (2001).

    Article  CAS  Google Scholar 

  45. Huang, Y.H. et al. In vivo cocaine experience generates silent synapses. Neuron 63, 40–47 (2009).

    Article  CAS  Google Scholar 

  46. Kiraly, D.D. et al. Behavioral and morphological responses to cocaine require Kalirin7. Biol. Psychiatry 68, 249–255 (2010).

    Article  CAS  Google Scholar 

  47. Chen, B.T. et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59, 288–297 (2008).

    Article  CAS  Google Scholar 

  48. McCutcheon, J.E., Wang, X., Tseng, K.Y., Wolf, M.E. & Marinelli, M. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J. Neurosci. 31, 5737–5743 (2011).

    Article  CAS  Google Scholar 

  49. McFarland, K., Lapish, C.C. & Kalivas, P.W. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 23, 3531–3537 (2003).

    Article  CAS  Google Scholar 

  50. Barrot, M. et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA 99, 11435–11440 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Golden, A. Robison and V. Vialou for helpful discussions and comments on the manuscript. This work was supported by grants from the US National Institute on Drug Abuse (R01 DA14133, P01 DA08227) and US National Institute of Mental Health (R01 MH51399).

Author information

Authors and Affiliations

Authors

Contributions

D.M.D., S.J.R. and E.J.N. were responsible for overall study design. D.M.D., H.S., K.C.D., C.D. and I.M. designed and conducted GTPase activity assays and analyzed the data. D.M.D., M.E.C., J.W.K. and D.F. carried out the stereotaxic surgeries and behavioral experiments. D.M.D., M.S.M.-R., D.D.-W., V.G. and H.S. carried out and analyzed the western blots. D.M.D., D.C. and V.G. scanned, counted and analyzed the spine data. D.M.D., M.K.L., H.S., K.N.S., G.E.H., S.J.R., Y.O. and K.M.H. designed and did the necessary cloning and conducted the optical Rac1-pa experiments. Y.Z. provided the floxed Rac1 mice and expertise in Rac1 signaling; R.L.N. constructed and provided the viral vectors for gene transfer. D.M.D. and E.J.N. wrote the paper with the help of the other authors.

Corresponding author

Correspondence to Eric J Nestler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 2164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, D., Sun, H., Lobo, M. et al. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat Neurosci 15, 891–896 (2012). https://doi.org/10.1038/nn.3094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing