Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The animal and human neuroendocrinology of social cognition, motivation and behavior

Abstract

Extensive animal and recent human research have helped inform neuroendocrinological models of social cognition, motivation and behavior. In this review, we first summarize important findings regarding oxytocin, arginine vasopressin and testosterone in the domains of affiliation, social cognition, aggression and stress/anxiety. We then suggest ways in which human research can continue to profit from animal research, particularly by exploring the interactive nature of neuromodulatory effects at neurochemical, organismic and contextual levels. We further propose methods inspired by the animal literature for the ecologically valid assessment of affiliative behavior in humans. We conclude with suggestions for how human research could advance by directly assessing specific social cognitive and motivational mechanisms as intermediate variables. We advocate a more comprehensive look at the distinct networks identified by social neuroscience and the importance of a motivational state, in addition to approach and avoidance, associated with quiescence and homeostatic regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Social neuroendocrinological findings from animal and human research.
Figure 2: Overview of neuroendocrinological influences on human social cognition, emotion, and motivation as potential (and measureable) mediators of behavior.

Similar content being viewed by others

References

  1. Gordon, I., Martin, C., Feldman, R. & Leckman, J. Oxytocin and social motivation. Dev. Cogn. Neurosci. 1, 471–493 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Insel, T.R. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin and affiliative behavior. Neuron 65, 768–779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Anders, S.M., Goldey, K. & Kuo, P. The steroid/peptide theory of social bonds: integrating testosterone and peptide responses for classifying social behavioral contexts. Psychoneuroendocrinology 36, 1265–1275 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Donaldson, Z.R. & Young, L. Oxytocin, vasopressin and the neurogenetics of sociality. Science 322, 900–904 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Olazábal, D.E. & Young, L. Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum. Horm. Behav. 49, 681–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ross, H.E. et al. Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J. Neurosci. 29, 1312–1318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ross, H.E. et al. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162, 892–903 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, H.J., Macbeth, A., Pagani, J. & Young, W. Oxytocin: The great facilitator of life. Prog. Neurobiol. 88, 127–151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Young, L.J. & Wang, Z. The neurobiology of pair bonding. Nat. Neurosci. 7, 1048–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Ferguson, J.N., Young, L.J. & Insel, T.R. The neuroendocrine basis of social recognition. Front. Neuroendocrinol. 23, 200–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. D'Cunha, T.M., King, S., Fleming, A. & Lévy, F. Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Horm. Behav. 59, 14–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Ferris, C.F. et al. Oxytocin in the amygdala facilitates maternal aggression. Ann. NY Acad. Sci. 652, 456–457 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Detillion, C.E., Craft, T. & Glasper, E. Prendergast & DeVries. Social facilitation of wound healing. Psychoneuroendocrinology 29, 1004–1011 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Amico, J.A., Mantella, R., Vollmer, R. & Li, X. Anxiety and stress responses in female oxytocin-deficient mice. J. Neuroendocrinol. 16, 319–324 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Winslow, J.T., Hastings, N., Carter, C., Harbaugh, C. & Insel, T. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365, 545–548 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Z., Ferris, C. & Vries, G.D. Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proc. Natl. Acad. Sci. USA 91, 400–404 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim, M.M. & Young, L. Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience 125, 35–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Caldwell, H.K., Lee, H., Macbeth, A. & Young, W. Vasopressin: behavioral roles of an ''original'' neuropeptide. Prog. Neurobiol. 84, 1–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Bosch, O.J. & Neumann, I. Vasopressin released within the central amygdala promotes maternal aggression. Eur. J. Neurosci. 31, 883–891 (2010).

    Article  PubMed  Google Scholar 

  20. Koolhaas, J., Brink, T.V.d., Roozendal, B. & Boorsma, F. Medial amygdala and aggressive behavior: interaction between testosterone and vasopressin. Aggress. Behav. 16, 223–229 (1990).

    CAS  Google Scholar 

  21. Wersinger, S.R., Caldwell, H., Christiansen, M. & Young, W. Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav. 6, 653–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Engelmann, M., Landgraf, R. & Wotjak, C. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front. Neuroendocrinol. 25, 132–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Cushing, B.S., Okorie, U. & Young, L. The effects of neonatal castration on the subsequent behavioural response to centrally administered arginine vasopressin and the expression of V1a receptors in adult male prairie voles. J. Neuroendocrinol. 15, 1021–1026 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Trainor, B.C. & Marler, C. Testosterone promotes paternal behaviour in a monogamous mammal via conversion to oestrogen. Proc. Biol. Sci. 269, 823–829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelson, R.J. & Trainor, B. Neural mechanisms of aggression. Nat. Rev. Neurosci. 8, 536–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Wingfield, J., Henger, R., Dufty, A. & Ball, G. The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems and breeding strategies. Am. Nat. 136, 829–846 (1990).

    Article  Google Scholar 

  27. Muller, M.N. & Wrangham, R. Dominance, aggression and testosterone in wild chimpanzees: a test of the 'challenge' hypothesis. Anim. Behav. 67, 113–123 (2004).

    Article  Google Scholar 

  28. Handa, R.J., Burgess, L., Kerr, J. & O'Keefe, J. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm. Behav. 28, 464–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Frye, C.A. & Seliga, A. Testosterone increases analgesia, anxiolysis and cognitive performance of male rats. Cogn. Affect. Behav. Neurosci. 1, 371–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bos, P.A., Panksepp, J., Bluthe, R. & van Honk, J. Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: a review of single administration studies. Front. Neuroendocrinol. 33, 17–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Bartz, J.A., Zaki, J., Bolger, N. & Ochsner, K. Social effects of oxytocin in humans: context and person matter. Trends Cogn. Sci. 15, 301–309 (2011).

    CAS  PubMed  Google Scholar 

  33. Van Ijzendoorn, M.H. & Bakermans-Kranenburg, M. A sniff of trust: meta-analysis of the effects of intranasal oxytocin administration on face recognition, trust to in-group, and trust to out-group. Psychoneuroendocrinology 37, 438–443 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Eisenegger, C., Haushofer, J. & Fehr, E. The role of testosterone in social interaction. Trends Cogn. Sci. 15, 263–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Born, J. et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 5, 514–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kosfeld, M., Heinrichs, M., Zak, P., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Zak, P.J., Stanton, A.A. & Ahmadi, S. Oxytocin increases generosity in humans. PLoS ONE 2, e1128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Declerck, C.H., Boone, C. & Kiyonari, T. Oxytocin and cooperation under conditions of uncertainty: the modulating role of incentives and social information. Horm. Behav. 57, 368–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Theodoridou, A., Rowe, A., Penton-Voak, I. & Rogers, P. Oxytocin and social perception: oxytocin increases perceived facial trustworthiness and attractiveness. Horm. Behav. 56, 128–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Mikolajczak, M., Pinon, N., Lane, A., Timary, P.d. & Luminet, O. Oxytocin not only increases trust when money is at stake, but also when confidential information is in the balance. Biol. Psychol. 85, 182–184 (2010).

    Article  PubMed  Google Scholar 

  41. Ditzen, B. et al. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol. Psychiatry 65, 728–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Naber, F., van Ijzendoorn, M.H., Deschamps, P., van Engeland, H. & Bakersmans-Kranenburg, M. Intranasal oxytocin increases fathers' observed responsiveness during play with their children: a double-blind within-subject experiment. Psychoneuroendocrinology 35, 1583–1586 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Shamay-Tsoory, S.G. et al. Intranasal administration of oxytocin increases envy and schadenfreude (gloating). Biol. Psychiatry 66, 864–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. DeDreu, C.K., Greer, L., Kleef, G.V., Shalvi, S. & Handgraaf, M. Oxytocin promotes human ethnocentrism. Proc. Natl. Acad. Sci. USA 108, 1262–1266 (2011).

    Article  Google Scholar 

  45. Chen, F.S., Kumsta, R. & Heinrichs, M. Oxytocin and intergroup relations: goodwill is not a fixed pie. Proc. Natl. Acad. Sci. USA 108, E45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Unkelbach, C., Guastella, A. & Forgas, J. Oxytocin selectively facilitates recognition of positive sex and relationship words. Psychol. Sci. 19, 1092–1094 (2008).

    Article  PubMed  Google Scholar 

  47. Kéri, S. & Benedek, G. Oxytocin enhances the perception of biological motion in humans. Cogn. Affect. Behav. Neurosci. 9, 237–241 (2009).

    Article  PubMed  Google Scholar 

  48. Rimmele, U., Hediger, K., Heinrichs, M. & Klaver, P. Oxytocin makes a face in memory familiar. J. Neurosci. 29, 38–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Savaskan, E., Ehrhardt, R., Schulz, A., Walter, M. & Schachinger, H. Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 33, 368–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Guastella, A.J., Mitchell, P. & Dadds, M. Oxytocin increases gaze to the eye region of human faces. Biol. Psychiatry 63, 3–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Gamer, M., Zurowski, B. & Büchel, C. Different amygdala subregions mediate valence related and attentional effects of oxytocin in humans. Proc. Natl. Acad. Sci. USA 107, 9400–9405 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Domes, G., Heinrichs, M., Michel, A., Berger, C. & Herpertz, S.C. Oxytocin improves 'mind-reading' in humans. Biol. Psychiatry 61, 731–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Heinrichs, M., Baumgartner, T., Kirschbaum, C. & Ehlert, U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry 54, 1389–1398 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Petrovic, P., Kalisch, R., Singer, T. & Dolan, R.J. Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J. Neurosci. 28, 6607–6615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kirsch, P. et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guastella, A.J., Kenyon, A., Alvares, G., Carson, D. & Hickie, I. Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol. Psychiatry 67, 1220–1222 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Guastella, A.J., Kenyon, A., Unkelbach, C., Alvares, G. & Hickie, I. Arginine Vasopressin selectively enhances recognition of sexual cues in male humans. Psychoneuroendocrinology 36, 294–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Thompson, R.R., George, K., Walton, J., Orr, S. & Benson, J. Sex-specific influences of vasopressin on human social communication. Proc. Natl. Acad. Sci. USA 103, 7889–7894 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shalev, I. et al. Vasopressin needs an audience: neuropeptide elicited stress responses are contingent upon perceived social evaluative threats. Horm. Behav. 60, 121–127 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Zink, C.F., Stein, J., Kempf, L., Hakimi, S. & Meyer-Lindenberg, A. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J. Neurosci. 30, 7017–7022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M. & Fehr, E. Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature 463, 356–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Bos, P.A., Terburg, D. & van Honk, J. Testosterone decreases trust in socially naive humans. Proc. Natl. Acad. Sci. USA 107, 9991–9995 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. van Honk, J. et al. Testosterone shifts the balance between sensitivity for punishment and reward in healthy young women. Psychoneuroendocrinology 29, 937–943 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hermans, E.J. et al. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. Neuroimage 52, 277–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Hermans, E.J., Putman, P., Baas, J., Koppeschaar, H. & van Honk, J. A single administration of testosterone reduces fear-potentiated startle in humans. Biol. Psychiatry 59, 872–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Hermans, E.J. et al. Exogenous testosterone attenuates the integrated central stress response in healthy young women. Psychoneuroendocrinology 32, 1052–1061 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hermans, E.J., Ramsey, N. & van Honk, J. Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol. Psychiatry 63, 263–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Landgraf, R. & Neumann, I.D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25, 150–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Csiffáry, A., Ruttner, Z., Toth, Z. & Palkovits, M. Oxytocin nerve fibers innervate endorphin neurons in the arcuate nucleus of the rat hypothalamus. Neuroendocrinology 56, 429–435 (1992).

    Article  PubMed  Google Scholar 

  70. Brown, C.H., Russell, J. & Leng, G. Opioid modulation of magnocellular neurosecretory cell activity. Neurosci. Res. 36, 97–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Depue, R.A. & Morrone-Strupinsky, J.V. A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behav. Brain Sci. 28, 313–350 (2005).

    PubMed  Google Scholar 

  72. Nelson, E.E. & Panksepp, J. Brain substrates of infant-mother attachment: contributions of opioids, oxytocin and norepinephrine. Neurosci. Biobehav. Rev. 22, 437 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Domes, G. et al. Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 35, 83–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Carter, C.S., Boone, E., Pournajafi-Nazarloo, H. & Bales, K. Consequences of early experiences and exposure to oxytocin and vasopressin are sexually dimorphic. Dev. Neurosci. 31, 332–341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Winslow, J.T., Noble, P., Lyons, C., Sterk, S. & Insel, T. Rearing effects on cerebrospinal fluid oxytocin concentration and social buffering in rhesus monkeys. Neuropsychopharmacology 28, 910–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Heim, C. et al. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol. Psychiatry 14, 954–958 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. De Dreu, C.K. et al. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328, 1408–1411 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Williams, J.R., Catania, K. & Carter, C. Development of partner preferences in female prairie voles (Microtus ochrogaster): the role of social and sexual experience. Horm. Behav. 26, 339–349 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. McCall, C., Blascovich, J., Young, A. & Persky, S. Using immersive virtual environments to measure proxemic behavior and to predict aggression. Soc. Influence 4, 138–154 (2009).

    Article  Google Scholar 

  80. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    Article  PubMed  Google Scholar 

  81. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Lamm, C., Decety, J. & Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54, 2492–2502 (2011).

    Article  PubMed  Google Scholar 

  83. Keysers, C., Kaas, J.H. & Gazzola, V. Somatosensation in social perception. Nat. Rev. Neurosci. 11, 417–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Premack, D. & Woodruff, G. Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1, 515–526 (1978).

    Article  Google Scholar 

  85. Wimmer, H. & Perner, J. Beliefs about beliefs: representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition 13, 103–128 (1983).

    Article  CAS  PubMed  Google Scholar 

  86. Baron-Cohen, S. Mindblindness: an Essay on Autism and Theory of Mind (MIT Press, Cambridge, Massachusetts, 1995).

  87. Gallagher, H.L. & Frith, C.D. Functional imaging of 'theory of mind'. Trends Cogn. Sci. 7, 77–83 (2003).

    Article  PubMed  Google Scholar 

  88. Mitchell, J.P. Inferences about mental states. Phil. Trans. R. Soc. Lond. B 364, 1309–1316 (2009).

    Article  Google Scholar 

  89. Adolphs, R. Neural systems for recognizing emotion. Curr. Opin. Neurobiol. 12, 169–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Kanwisher, N. & Yovel, G. The fusiform face area: a cortical region specialized for the perception of faces. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361, 2109–2128 (2006).

    Article  Google Scholar 

  91. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The Reading the Mind in the Eyes Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Adolphs, R., Sears, L. & Piven, J. Abnormal processing of social information from faces in autism. J. Cogn. Neurosci. 13, 232–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Hurlemann, R. et al. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J. Neurosci. 30, 4999–5007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saxe, R. & Kanwisher, N. People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19, 1835–1842 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Singer, T. et al. Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain. Emotion 8, 781–791 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Riem, M.M. et al. Oxytocin modulates amygdala, insula and inferior frontal gyrus responses to infant crying: a randomized controlled trial. Biol. Psychiatry 70, 291–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Heinrichs, M. & Domes, G. Neuropeptides and social behavior: effects of oxytocin and vasopressin in humans. in Advances in Vasopressin and Oxytocin: From Genes to Behaviour to Disease, Vol. 170 (eds. Neumann, I.D. & Landgraf, R.) 337–350 (Elsevier Science, 2008).

  98. Burgdorf, J. & Panksepp, J. The neurobiology of positive emotions. Neurosci. Biobehav. Rev. 30, 173–187 (2006).

    Article  PubMed  Google Scholar 

  99. Pace, T.W. et al. Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress. Psychoneuroendocrinology 34, 87–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Rockliff, H. et al. Effects of intranasal oxytocin on 'compassion focused imagery'. Emotion 11, 1388–1396 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCall, C., Singer, T. The animal and human neuroendocrinology of social cognition, motivation and behavior. Nat Neurosci 15, 681–688 (2012). https://doi.org/10.1038/nn.3084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing