Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

Abstract

CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular patch-clamp recording from dendrites and axons of CA3 pyramidal neurons.
Figure 2: Action potentials backpropagate into the dendrites of CA3 pyramidal neurons with large amplitude and fast time course.
Figure 3: Dendritic action potential backpropagation in CA3 pyramidal cells shows only moderate activity dependence.
Figure 4: High Na+-to-K+ conductance ratio and distinct conductance gradients in CA3 pyramidal neuron dendrites.
Figure 5: Efficient initiation of dendritic Na+ spikes in CA3 pyramidal neurons.
Figure 6: Dendritic spikes are mediated by voltage-gated Na+ channels.
Figure 7: Dendritic spikes increase the efficacy of axosomatic action potential initiation.

Similar content being viewed by others

References

  1. McNaughton, B.L. & Morris, R.G.M. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408–415 (1987).

    Article  Google Scholar 

  2. Lisman, J.E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate–CA3 interactions. Neuron 22, 233–242 (1999).

    Article  CAS  Google Scholar 

  3. Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002).

    Article  CAS  Google Scholar 

  4. Nakazawa, K., McHugh, T.J., Wilson, M.A. & Tonegawa, S. NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361–372 (2004).

    Article  CAS  Google Scholar 

  5. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  6. Pelkey, K.A. & McBain, C.J. How to dismantle a detonator synapse. Neuron 45, 327–329 (2005).

    Article  CAS  Google Scholar 

  7. Henze, D.A., Wittner, L. & Buzsáki, G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat. Neurosci. 5, 790–795 (2002).

    Article  CAS  Google Scholar 

  8. Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  Google Scholar 

  9. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  10. Debanne, D., Gähwiler, B.H. & Thompson, S.M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 (1998).

    Article  CAS  Google Scholar 

  11. Hafting, T., Fyhn, M., Molden, S., Moser, M.B. & Moser, E.I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  Google Scholar 

  12. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  Google Scholar 

  13. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    Article  CAS  Google Scholar 

  14. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  Google Scholar 

  15. Korngreen, A. & Sakmann, B. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J. Physiol. (Lond.) 525, 621–639 (2000).

    Article  CAS  Google Scholar 

  16. Stuart, G., Spruston, N. & Häusser, M. (eds.). Dendrites 2nd edn. (Oxford University Press, Oxford, 2007).

  17. Bischofberger, J., Engel, D., Li, L., Geiger, J.R.P. & Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).

    Article  CAS  Google Scholar 

  18. Nevian, T., Larkum, M.E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 10, 206–214 (2007).

    Article  CAS  Google Scholar 

  19. Larkum, M.E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009).

    Article  CAS  Google Scholar 

  20. Hu, H., Martina, M. & Jonas, P. Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327, 52–58 (2010).

    Article  CAS  Google Scholar 

  21. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441, 761–765 (2006).

    Article  CAS  Google Scholar 

  22. Spruston, N. & Johnston, D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67, 508–529 (1992).

    Article  CAS  Google Scholar 

  23. Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).

    Article  CAS  Google Scholar 

  24. Meeks, J.P. & Mennerick, S. Action potential initiation and propagation in CA3 pyramidal axons. J. Neurophysiol. 97, 3460–3472 (2007).

    Article  Google Scholar 

  25. Traub, R.D. & Miles, R. Neuronal Networks of the Hippocampus (Cambridge University Press, Cambridge, 1991).

  26. Jaffe, D.B. & Carnevale, N.T. Passive normalization of synaptic integration influenced by dendritic architecture. J. Neurophysiol. 82, 3268–3285 (1999).

    Article  CAS  Google Scholar 

  27. Golding, N.L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).

    Article  CAS  Google Scholar 

  28. Kamondi, A., Acsády, L. & Buzsáki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).

    Article  CAS  Google Scholar 

  29. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  Google Scholar 

  30. Gasparini, S., Migliore, M. & Magee, J.C. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004).

    Article  CAS  Google Scholar 

  31. Losonczy, A., Makara, J.K. & Magee, J.C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    Article  CAS  Google Scholar 

  32. Rall, W. Core conductor theory and cable properties of neurons. in Handbook of Physiology, The Nervous System, Cellular Biology of Neurones (ed. Kandel, E.R.) 39–98 (American Physiological Society, Bethesda, Maryland, 1977).

  33. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).

    Article  CAS  Google Scholar 

  34. Krueppel, R., Remy, S. & Beck, H. Dendritic integration in hippocampal dentate granule cells. Neuron 71, 512–528 (2011).

    Article  CAS  Google Scholar 

  35. Frick, A., Magee, J., Koester, H.J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).

    Article  CAS  Google Scholar 

  36. Holmes, W.R. The role of dendritic diameters in maximizing the effectiveness of synaptic inputs. Brain Res. 478, 127–137 (1989).

    Article  CAS  Google Scholar 

  37. Major, G., Larkman, A.U., Jonas, P., Sakmann, B. & Jack, J.J.B. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci. 14, 4613–4638 (1994).

    Article  CAS  Google Scholar 

  38. Jarsky, T., Roxin, A., Kath, W.L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676 (2005).

    Article  CAS  Google Scholar 

  39. Softky, W. Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58, 13–41 (1994).

    Article  CAS  Google Scholar 

  40. Poirazi, P. & Mel, B.W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796 (2001).

    Article  CAS  Google Scholar 

  41. Kampa, B.M., Clements, J., Jonas, P. & Stuart, G.J. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike timing–dependent synaptic plasticity. J. Physiol. (Lond.) 556, 337–345 (2004).

    Article  CAS  Google Scholar 

  42. McMahon, D.B.T. & Barrionuevo, G. Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. J. Neurophysiol. 88, 528–533 (2002).

    Article  Google Scholar 

  43. Kobayashi, K. & Poo, M.-M. Spike train timing–dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41, 445–454 (2004).

    Article  CAS  Google Scholar 

  44. Urban, N.N., Henze, D.A. & Barrionuevo, G. Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. J. Neurophysiol. 80, 1558–1561 (1998).

    Article  CAS  Google Scholar 

  45. Urban, N.N. & Barrionuevo, G. Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 11450–11455 (1998).

    Article  CAS  Google Scholar 

  46. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    Article  CAS  Google Scholar 

  47. Spruston, N., Jonas, P. & Sakmann, B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.) 482, 325–352 (1995).

    Article  CAS  Google Scholar 

  48. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 (1993).

    Article  CAS  Google Scholar 

  49. Lien, C.C. & Jonas, P. Kv3 potassium conductance is necessary and kinetically optimized for high frequency action potential generation in hippocampal interneurons. J. Neurosci. 23, 2058–2068 (2003).

    Article  CAS  Google Scholar 

  50. Chicurel, M.E. & Harris, K.M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).

    Article  CAS  Google Scholar 

  51. Song, W.-J. et al. Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J. Neurosci. 18, 3124–3137 (1998).

    Article  CAS  Google Scholar 

  52. Sakmann, B. & Neher, E. Geometric parameters of pipettes and membrane patches. in Single-Channel Recording (eds. Sakmann, B. & Neher, E.) (Plenum Press, New York, 1995).

Download references

Acknowledgements

We thank G. Buzsáki and J. Lisman for critically reading previous manuscript versions. We also thank F. Marr and I. Koeva for technical assistance and E. Kramberger for perfect editorial support. This work was supported by the Deutsche Forschungsgemeinschaft (TR 3/B10) and the European Union (European Research Council Advanced grant to P.J.).

Author information

Authors and Affiliations

Authors

Contributions

S.K. performed the experiments and analyzed the data. H.H. and S.J.G. contributed to initial experiments. P.J. analyzed data and wrote the paper. All of the authors revised the paper.

Corresponding author

Correspondence to Peter Jonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–4 (PDF 1622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Guzman, S., Hu, H. et al. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nat Neurosci 15, 600–606 (2012). https://doi.org/10.1038/nn.3060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing